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Abstract:

We consider a holomorphic curve from the complex plane into the complex

projective space of odd dimension and give some results on truncated defects when the truncated

defect relation is extremal.
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1. Introduction. Let f = [f1,..., fnt1] be
a transcendental holomorphic curve from C into
the n-dimensional complex projective space P™(C)
with a reduced representation (fi,..., fn41): C —
Cntl — {0}, where n is a positive integer. We
suppose throughout the paper that f is linearly
non-degenerate over C; namely, fi,...,f,41 are
linearly independent over C. For a vector a =
(ai,...,any1) € C"—{0}, let §(a, f) and §,(a, f)
be the deficiency and the truncated deficiency of a
with respect to f respectively (see [7, Introduction]).
We have that 0 < d(a, f) < d,(a, f) <1. Let X be a
subset of C"*! — {0} in N-subgeneral position such
that #X > N + 1, where N is an integer satisfying
N >n.

Cartan ([1], N = n) and Nochka ([4], N > n)
gave the following

Theorem A (the truncated defect relation)
(see [2, Corollary 3.3.9]). For any g elements a;
G =1,...,9) of X 2N —-n+1 < ¢ < x), we
have the inequality:

Sp(aj, f) <2N —n+1.

M-

~
Il
_

We are interested in the holomorphic curve f
extremal for the truncated defect relation:

(1) Sulay, f) =2N —n+1.

<
—

In [6, Theorems 5.1, 6.1] we proved the following
theorem when n is even:
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Theorem B. Suppose that there are vectors
ai,...,aq of X such that (1) holds, where 2N —
n+l<qg<oo IfN>n=2m(m e N) then
#{ay | ulag, f) =1} > 2N —n+ 1)/(n +1).

In [8, Theorem 3.1] we proved a theorem for the
holomorphic curve f with maximal deficiency sum
with respect to d(a, f) when n is odd and ¢ < .

The purpose of this paper is to give a result
when N > n, n is odd and (1) holds, which is an
improvement of [8, Theorem 3.1].

2. Preliminaries and lemma. Let f, X
etc. be as in Section 1, ¢ an integer satisfying 2N —
n+1<¢g< ooand we put Q@ = {1,2,...,q}. Let
{a; | j € Q} be a subset of X. For a non-empty
subset P of @, we denote by V(P) the vector space
spanned by {a; | j € P} and by d(P) the dimension
of V(P). Weput O={PCQ|0<#P<N+1}.

Lemma 2.1 (see [2, (2.4.3), p. 68]). IfP € O,
then #P — d(P) < N —n.

For {a; | j € Q}, let w: Q@ — (0,1] be the
Nochka weight function and 6 the reciprocal num-
ber of the Nochka constant given in [2, p. 72]. We
need the following properties of them:

Lemma 2.2 (see [2, Theorem 2.11.4]).

(a) 0 <w(§)0 <1 forallje Q;
(b) If P €O, then ) ,;cpw(j) < d(P).

Definition 2.1 ([5, Definition 1]). We put

A=mind(P)/#P and o(j)=X (j€Q)

Then, A and ¢ have the following properties.
Lemma 2.3 ([5, Proposition 2]).

(a) (N —n+1) <A< (nt1)/(N+1):

(b) Forany P € O, ;cpo(j) <d(P).
Remark 2.1.

() If X < (n + 1)/2N — n + 1), then
A = mini<j<qw(j), w(j) = X and Ow(j) < 1
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(j € FPy) for an element Py € O satisfying

A =d(Po)/#F.

(b)y TA>(n+1)/(2N —n+1), then w(j) =1/0 =

(n+1)/2N—-n+1) ((=1,...,9).

(See the proof of [2, Proposition 2.4.4, p. 68] and
the definitions of w(j) and 6 (]2, p. 72]).)

We introduce the following class of mappings
from @ to (0, 1]:

Definition 2.2. W = {7: Q — (0,1] ‘ VP e
0,5 ep () < d(P)}.

For example the Nochka weight function w (by
Lemma 2.2 (b)) and o given in Definition 2.1 (by
Lemma 2.3 (b)) are in W.

Lemma 2.4. For any 7 € W it holds that
(a) ([6, Lemma 2.9]) >°9_, 7(j)dn(a;, f) <n+1.
In particular,

(b) ([2, Th. 3.3.8]) 22:1 w(f)on(aj, f) <n+1.

Lemma 2.5 ([6, Corollary 2.2]). Suppose that
N > n and that for ai,...,aq € X, the equality (1)
holds. For j € Q if bw(j) < 1, then d,(a;, f) = 1.

Corollary 2.1. Suppose that N > n > 2 and
that for a1,...,a, € X (¢ < ), the equality (1)
holds. If the inequality (x) A < (n+1)/(2N —n+1)
holds, then there exists a non-empty subset Py € O
satisfying
(a) d(Po)/#P < (n+1)/(2N —n + 1)

(b) (5n(aj,f) =1 (] € P())
In particular,

#{j € Qlonla;, f) =1} > 2N —n+1)/(n+1).

Proof. By the definition of A and the inequal-
ity (x), there is a set Py € O such that

By (*) and Remark 2.1 (a), we have w(j) = A < 67!
(j € Py), so that Ow(j) <1 (j € Py). By Lemma 2.5,
dn(a;, f) =1 (j € Py) since (1) is assumed. As
2N —n+1 2N —n+1

+1 n+1
we have our corollary. Il

Let F be a family of non-empty subsets of X.

Definition 2.3 ([8, Definition 2.2]). We say
that two sets Pi, P, € F have a relation P, ~ P
if and only if either (i) Py N Py # () or (ii) there exist
sets Rq,...,Rs € F such that

R;_1NR; # )

Lemma 2.6 ([8, Lemma 2.8]).
“~" i F is an equivalence relation.

)

#Py = d(Py)/\ > d(Py) >

(1<j<s+1),Ry=Pi, Rep1 = Ps.

The relation
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Proof. As the proof is not given in [8], we give
it here.

(i) The relation “~” is reflexive.
that for any P € F, P ~ P.

(ii) The relation “~” is symmetric. We prove
that for Py, P, € F, if Py ~ P5, then P, ~ Py.

Case 1: Py NPy # (). Then, P, N P; # () and
we have Py ~ Pj.

Case 2: There exist sets Ry,..., Rs € F such
that Rj_1 NR; #0 (1 <j <s+1), where Ry = P,
and Rs+1 = Pg. Put R3+1_j = T] (O < j < s+ 1)
Then, Ty,...,Ts € F, T;_1 N T} £ (1 <5< S—l—l),
Ty = P; and Ts11 = P;. This means that P, ~ P;.

(iii) The relation “~” is transitive. We prove
that for P, Py, P3 € F,if P, ~ P, and P, ~ P3 then
P~ Pg.

Case 1: PNPy, # 0 and P,NP3 # 0. We
put Ry = P,. then R; satisfies the condition (ii) of
Definition 2.3 and so P; ~ Ps.

Case 2: P, NP, # () and there exist sets
Ti,...,Ty € Fsuch that T;_, NT; # 0 (1 < j <
t+ 1), where Ty = P; and T34 = P3. In this case,
we put

Ry=PFP, Ri=PF, Rjij;1=1T;

Then, the sets Ry, Ri,...,Riy2 satisfy the condi-
tion (ii) of Definition 2.3 and so P, ~ Ps.

Case 3: There exist sets S1,...,5s € F such
that S]‘,1 ﬂSj 75 0 (1 <j<s+ 1), where Sy = Py,
Ssi1 = Py and P, N P3 # (. In this case we have
P; ~ P5 as in Case 2.

Case 4: There exist sets S1,...,5s € F such
that S;_1NS; # 0 (1 < j < s+ 1), where Sy =
P, 5,41 = P, and there exist sets T1,...,7; € F
such that T;_1 NT; # 0 (1 < j < t+ 1), where
Ty = P, and Ty = Ps. In this case, we put Ry =
P, R;j =5 (1<j<s), Rey1r = P2, Ryy14; =
T; (1 < j < t), Reyt42 = P3. Then the sets
Ro, Ry,. .., Rett42 satisfy the condition (ii) of Defi-
nition 2.3 and so P; ~ Ps. ]

3. Extremal case I: ¢ < oo. Let f, X,
on(a, f), O etc. be as in Section 1 or 2. The pur-
pose of this section is to give a result when n is odd
and the trucated defect relation is extremal for ¢ =
#{a € X | d,(a, f) > 0} < co. We put

{a € X | dn(a, f) >0} ={ai,aq,...

It is trivial

(1<j<t+1).

, Qg )
We suppose that

(3i) N>n=2m—1(m € N);

(3.4i) >°9_, dn(ay, f) =2N —n+1.
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From (3.ii), the number ¢ must satisfy the in-
equality 2N —n+1 < g < co. We can apply lemmas
in Section 2. We note that (n +1)/(2N —n+1) =
m/(N —m+1)asn=2m— 1.

From Lemma 2.3 (b), Lemma 2.4 (a) and the
assumption (3.ii), we obtain the inequality A <
m/(N —m+1).

First, we have the following

Lemma 3.1. IfA <m/(N—m+1), then there
exists Py € O satisfying 6, (a;, f) =1 (j € Py) and

2N —n+1 2N —n+1

Py =d(P,
#P (Po)/A > 1 "

d(Po) >
Proof. By Lemma 2.3 (a) we have m > 2, so
that n = 2m —1 > 3. We can apply Corollary 2.1 to
obtain this lemma. []
Next, we consider the case when A =
m/(N —m + 1). We note that w(j) = XA (j € Q)
by Remark 2.1 (b). Put

Oy ={PecO|dP)/#P =X=m/(N —m+1)}.

Note that O; is non-empty and finite. We apply
Definition 2.3 and Lemma 2.6 to F = O; and classify
O1 by the equivalence relation “~.” We put

Ol/N:{Pl,...,Pp};
UP k=1...p).
PcPy

The method used in [8, Section 3] is applicable
to this case and we obtain the followings. As in [8,
Proposition 3.5] we have the following
Lemma 3.2.
(a) M e O; (1<k<p);
(b) p=>2;
(c) MkﬂMg =0 (k#4L) and
(d) d(My)=m, #Mp =N —m+1 (1 <k <p).
Put QU = Ui_; Mi. As in [8, Proposition 3.6]
we have the following

Lemma 3.3.
(a> Q = Qo;
(b) (N—m+1)|qg and p=q/(N —m+1).
As in [8, Proposition 3.7] we have the following
Lemma 3.4. Anym elements of {a1,...,a4}
are linearly independent.
Summarizing Lemmas 3.1, 3.2, 3.3 and 3.4 we
obtain the following
Theorem 3.1. Suppose that
(i) N>n=2m—1 (m e N),
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(ii) on(a;, f)>0(=1,...,q:q < 0) and

q
> bulaj, f) =2N —n+1.
j=1

Then, for the set @ = {1,...
or (IT) given below holds:
(1) #(j € Q| dulay, f) = 1} > =1,
(IT) g is divisible by N — m + 1 and for p =
q/(N — m + 1), there are mutually disjoint

,q}, either (I)

subsets My, ..., M, of Q satisfying
(a) Q= Uj=y My;
(b) d(My) =m, #M =N —-—m+1 (1 £k < p);

(c) any m elements of {aq,...,
independent.

4. Extremal case II: ¢ = oo. Let f, X
etc. be as in Section 1 or 2. As in the case of mero-
morphic functions (see [3, p. 79]), the set Y = {a €
X | 0n(a, f) > 0} is at most countable. We treated
the case when Y is a finite set in Section 3. In this
section, we suppose that Y is not finite and we put
Y = {a; | j € N}, where N is the set of positive
integers. We put

a,} are linearly

Ow={PCN|0<#P<N+1}

and for any non-empty finite subset P of N, we
use V(P) and d(P) as in Section 2. We put p =
minpeo_ d(P)/#P. Note that the set {d(P)/#P |
P € Oy} is a finite set We have the following

(4.2) ([5, p. 144]) y=hpg < p < 3255

(4:b) (6, Lemma 4.1]) 37% du(ay, f) < (n+ 1)/
From now on throughout this section we suppose
that
(4i) N>n=2m—1 (m € N);
(4.i1) Z;i1 dn(aj, f)=2N —n+1.
From (4.ii) and (4.b), we have the following in-
equality:

pw<(n+1)/(2N —n+1).

First, we have the following
Proposition 4.1. Ifu < (n+1)/(2N —n+1),
then

#{j € N|dn(a;, f) =1} > 2N —n+1)/(n+1).

(For the proof of this proposition, see the latter
half of the Proof of [6, Theorem 6.1, p. 17]. Note
that m > 2 by (4.a).)

Next, we consider the case p = (n+1)/(2N —
n 4+ 1). Note that 4 = (n + 1)/2N —n+ 1) =
m/(N —m +1). We put
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fOZ{PGOoo‘d(P)/#P:N:N_ZZH}>
which is not empty. Corresponding to [8, Proposi-
tions 3.2-3.7], we obtain the following propositions.
Proposition 4.2. For any P € Fy, d(P) <m
and #P < N —m + 1.
Proof. Let P be in Fy. Then, #P = d(P)/u
and so we have the inequality

#P —d(P)=d(P)(N —n)/m <N —n
by Lemma 2.1 and n = 2m — 1. This implies that
d(P)<mand #P < N —m + 1. []
Proposition 4.3. For any element Py of Fo,

{PG}—Q‘P—PQ;A@}#@.
Proof. Let Py be an element of Fy and put

fli{PEOOO|P7P07é®}.

Then, F; # 0 since #Py £ N —m + 1 < co. As the
set {d(P)/#P | P € F1} is finite, we put

p1 = min d(P)/#P.

Then, we have that u = p;. In fact, the inequality
1 < w1 holds by the definition of p. Suppose that
1 < 1 and let € be any number satisfying

(2) 0<e<l-p/m

and Py € F; satisfying d(Py)/#P; = p1. We choose
a positive integer ¢ satisfying

(4C) PyU Py CQ:{1,27...,(]};

(4.d) 23:1 on(aj, f)>2N —n+1—c¢

and 2N —n+1 < ¢ < oo. For this Q, we use 8, w,
and A, instead of §,w and A in Section 2 respec-
tively. By the choice of ¢ in (4.c), p = A, and by
Remark 2.1 (b) for j € Q

(3) wy(j) = p=m/(N —m+1)

and so we have from (4.d)

(4) qu(j)én(ajvf)>n+1_6:u'
j=1
Put
) = {u (j € Po)
m (J€Q—F).

Then, the function 7: @ — (0,1] belongs to W. In
fact, for any element P of O, such that P C @,
(a) when P C P,

> 7(j) = u#P < (d(P)/#P)#P = d(P);

jepP
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(b) when P — Py # 0,
> 7() < m#P < (d(P)/#P)#P = d(P).
jeEP
By Lemma 2.4 (a), (3) and (4) we obtain the
inequality
q

q
> o r()onlas, ) <n+1< " pdnlay, f)+ep,

j=1 j=1
which reduces to the inequality
(5) (m—p) D dulay, f) <ep.
JEQ—Fo
As
Z On(aj, f)>2N —n+1—e—#P,
JEQ—Po
>N -—-m+1—cg¢,

from (5) we have the inequality
(1 —)(N—m+1—¢) < ey,
which reduces to the inequality
(I=p/pm)(N=m+1) <e,

which contradicts (2) as N —m > 1. This implies
that the equality g = g1 must hold and P; belongs
to Fy and satisfies that P, — Py # (). L]
Proposition 4.4. Let P, and Py be in Fy. If
P NP 75 @, then Py U Py € Fy.
Proof. As Py, P, € Fy,

(6) d(Py)/#P1 = d(P2) [#P2 = 1.
From Proposition 4.2 we obtain the inequality
(7) d(P)+d(P) <2m=n+1.

As

(8) d(Pl U PQ) + d(P1 N PQ) < d(Pl) + d(PQ)
(see [2, p. 68]) and d(P1NP2) > 1 by our assumption,
from (7) and (8) we obtain the inequality

d(Pl U PQ) <mn,

which implies that #(Py U P2) < N so that
PLUP; € Ox.

Next, by the definition of i, we have the inequal-
ities

d(P1 UP2) d(Pl ﬂpg)
9 ————=~  and < =27
R AV "= %P0 p)
We mnote that P N P, € (O since

O<#PiNP)<N-m+1<N.



22 N. Toba

From (6), (8) and (9) we have the inequality

d(Pl U PQ) < d(Pl) + d(PQ) — d(Pl n PQ)
RSP UP) = #P +#P—#(PinP) -1

which implies that d(P; U Py)/#(P1 U Py) = p, so
that P, U Py € Fy. 0
We apply Definition 2.3 and Lemma 2.6 to F =

Fo and classify Fy by the equivalence relation “~.
We put

fo/NZ{Pl,...,Pp} (1§p§00),
UP k=1...p).
PeP

Corresponding to Lemma 3.2, we have the fol-
lowing
Proposition 4.5.

(a) My € Fo (1 <k <p);

(b) p=>2;

() MiNMy=0 (k#¢) and

(d) d(My) =m, #M=N-m+1 (1 <k <p).
Proof. (a) First, we note that #P, < N—m+

1 by Propositions 4.2 and 4.4. By the definition of
the relation “~” and by Proposition 4.4, we have this
assertion.

(b) As M; belongs to Fy, we apply Proposi-
tion 4.3 to M. There exists an element P € Fy such
that P — My # . In this case, PN M; = (). In fact,
if PN M; # 0, then, by the definition of the relation
“~7” P ~ M;. This means that P € P;, and so
P C M, by the definition of M7, which implies that
P — M; = 0. This is a contradiction. We have that
p=>2.

(¢) This is trivial from the definition of M.

(d) Suppose to the contrary that there exists
at least one k (1 < k < p) such that d(My) < m —
1. For simplicity, we may suppose without loss of
generality that £ = 1. Then, as

d(Ml U MQ) + d(Ml N Mg) < d(Ml) + d(Mg)

(see [2, p. 68]), by Proposition 4.2 and (a) of this
proposition we have

dMq)+d(Mz) <m—-14+m=2m—1=n,

which means that M; UMy € O. As My, M5 € Fy,
by the definition of y we have
< d(My U M) _ d(My) +d(Ms) _
T #(MLUM,) T #M+ #M

Note that M7 N My = () by (c) of this proposition.
We have d(M; UMs)/#(M;UMs) = pu, which means
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that My U My € Fy. Then, as

M1~M1UM2 and M1 UMQNMQ,

we have that M; ~ M. This is a contradiction since
M, € Py and My € P,. This implies that d(My) =
mand #Mp, =N -m+1(k=1,...,p). L]

Put Ji_; Mi = Q,. Then, we have the follow-
ing

Proposition 4.6. @, = N.

Proof. Suppose to the contrary that @, g N
Put 7, = {P € Ox | P — Q, # 0}, which is not
empty by our assumption of this proof, and we put
w2 = minper, d(P)/#P. Then, p < po. In fact,
the inequality g < po holds in general by the defini-
tion of pu. Suppose that u = po. Then, there exists
an element P € F, satisfying d(P)/#P = pus = pu,
which means that P € Fy and P — Q, # (. This
is a contradiction to the definition of ),. We have
that g < ps. Let Py € Fy satisfying d(Py)/# Py = i,
¢, the least number in N — ), and € any number
satisfying

(10) n(aq,, f).

We choose a positive integer u satisfying
(4de) PBhC@Q=1{1,2,...,u} and u > qo;
(4.) Z;‘Zl on(aj, f)>2N —n+1—¢
and 2N —n+ 1 < u < oo. For this Q, we use 0,,w,
and A, instead of , w and \ in Section 2 respectively.
By the choice of w in (4.€), p = A, and by Remark 2.1

(b) for j € Q
(11) wu(j)

and so we have from (4.f)

0<e<(u2/p—1)

=pu=m/(N—-m+1)

(12) Zwu n(aj, f)>n+1—eu.
Put
) = {u (j €QNQ)
H2 (.7 € Q_Qo)'

Then, the function 7: @ — (0,1] belongs to W (see
(a) and (b) in the Proof of Proposition 4.3). By
Lemma 2.4 (a), (11) and (12) we obtain the inequal-
ity

D r()dnlag, ) <n+1<) " pdnlay, f)+ep,

j=1 j=1

which reduces to the inequality
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(h2— 1) Y dnlay, f) <en,

jeQ_Qo

so that we have the inequality

(IU’Q/:U’ - 1)671(0’(107 f) <,

which is a contradiction to (10). This means that
Qo =N. ]

Remark 4.1. p (= the number of elements
of Fo/~) = o0.

In fact, if p < oo, then by Propositions 4.5 (d)
and 4.6, #N = p(N —m + 1) < oo, which is a con-
tradiction.

Proposition 4.7. Any m
{a; | j € N} are linearly independent.

Proof. Let by, ..., by, be any m vectors in {a; |
j € N}. Asm < oo there is a positive integer k such
that (x) M N{by,...,by,} = 0. We suppose without
loss of generality that &k = 1. As d(M;) = m by
Propsition 4.5 (d), there are m linearly independent
vectors ci,...,Cp in My. As #My; = N —m + 1,
(%) implies that #(M; U {by,...,b,,}) = N+ 1. As
X is in N—subgeneral position, there are n+1 = 2m
linearly independent vectors in M U {by,..., by}
This implies that n+1 vectors by,...,b,,,c1,...,Cnm
are linearly independent since d(M7) = m, and so
bi,..., by, are linearly independent. U]

Summarizing Propositions 4.1, 4.5, 4.7 and Re-
mark 4.1 we obtain the following

Theorem 4.1. Suppose that

(i) N >n=2m — 1, where m € N;
(ii) there exist an infinite number of vectors a; in

X satisfying dn(a;, f) >0 (j € N) and

elements  of

> bulaj, f) =2N —n+1.
j=1

Then, either (I) or (II) given below holds:
(I) #{j € N[ dn(ay, ) =1} > 2555
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(IT1) There are mutually disjoint subsets

My, ..., My,... of N satisfying

(a) N =UpZ; My,
(b) #Mp =N-—-m+1,dMy)=m (k=1,2,...)
and
(c) any m elements of {a; | j € N} are linearly
independent.
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