
No. 5] Proc. Japan Acad., 81, Ser. A (2005) 85

Rational solutions of the A4 Painlevé equation
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Abstract: In this note, we will completely classify all of rational solutions of the A4

Painlevé equation, which is a generalization of the fourth Painlevé equation. The rational so-
lutions are classified to three types by the Bäcklund transformation group.
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1. Introduction. In this note, we will com-
pletely classify all of rational solutions of the A4

Painlevé equation. The A4 Painlevé equation is
a member of the family of the An Painlevé equa-
tions found by Noumi-Yamada [6]. The A

(1)
2 and

A
(1)
3 Painlevé equations correspond to the fourth and

the fifth Painlevé equations, respectively. The A4

Painlevé equation is the first equation of the An

Painlevé equations, which is not the original Painlevé
equations.

The solutions of the Painlevé equations are gen-
erally transcendental. But it is known that the
Painlevé equations have special solutions which can
be expressed by algebraic functions or solutions of
linear equations. Rational solutions of all types of
the Painlevé equations are completely classified now.
Any solution of the first Painlevé equation is tran-
scendental. For the second Painlevé equation, a nec-
essary condition for the existence of rational solu-
tions is found by [8] and Vorob’ev [7] showed that
Yablonskii’s condition is sufficient in 1965. For the
other types of the Painlevé equations, rational solu-
tions are classified in 1977-2000 [2, 1, 5, 3, 4].

The Painlevé equations have the Bäcklund
transformations, which transform a solution to an-
other solution of the same equation with differ-
ent parameters. It is shown by Okamoto that the
Bäcklund transformation groups are isomorophic to
the affine Weyl groups. For PII , PIII , PIV , PV , PVI ,
the Bäcklund transformation groups correspond to
A

(1)
1 , A

(1)
1

⊕
A

(1)
1 , A

(1)
2 , A

(3)
3 , D

(1)
4 , respectively.

Nowadays, the Painlevé equations are extended
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in many different ways. Noumi-Yamada discovered
the equations of type A

(1)
l , whose Bäcklund trans-

formation groups are isomorphic to W̃ (A(1)
l ). In this

note, we deal with the equation of type A
(1)
4 and call

it the A4 Painlevé equation.

(A4)
f ′

i = fi(fi+1 − fi+2 + fi+3 − fi+4) + αi,

(i = 0, 1, 2, 3, 4)
f0 + f1 + f2 + f3 + f4 = t,

where ′ is the differentiation with respect to t. We
consider the suffix of fi and αi as elements of Z/5Z.
From (A4), we have

∑4
i=0 αi = 1. The equation (A4)

is essentially a nonlinear equation with the fourth
order.

The Bäcklund transformation group of (A4) is
generated by s0, s1, s2 , s3, s4 and π:

si(αi) = −αi, si(αj) = αj + αi (j = i ± 1),

si(αj) = αj (j �= i, i ± 1),

si(fi) = fi, si(fj) = fj ± αi

fi
(j = i ± 1),

si(fj) = fj (j �= i, i ± 1),

for i = 0, 1, 2, 3, 4 and

π(αj) = αj+1, π(fj) = fj+1 (0 ≤ j ≤ 4).

The Bäcklund transformation group 〈s0, s1, s2, s3,

s4, π〉 is isomorphic to the extended affine Weyl group
W̃ (A(1)

4 ).
We will completely classify rational solutions of

the A4 Painlevé equation. The result is that rational
solutions are decomposed to three classes, each of
which is an orbit by the action of W̃ (A(1)

4 ). The
details will be republished elsewhere.

Our main theorem is
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Theorem 1.1. The A4 Painlevé equation has
a unique rational solution if and only if the parame-
ters (αj)0≤j≤4 satisfy one of the following three con-
ditions.
(1) α0, α1, . . . , α4 ∈ Z.
(2) For some i = 0, 1, . . .4,

(αi, αi+1, αi+2, αi+3, αi+4)

=




±1
3
(1, 1, 1, 0, 0) mod Z

±1
3
(1,−1,−1, 1, 0) mod Z.

(3) For some i = 0, 1, . . . , 4,

(αi, αi+1, αi+2, αi+3, αi+4)

=




j

5
(1, 1, 1, 1, 1) mod Z

j

5
(1, 2, 1, 3, 3) mod Z,

with some j = 1, 2, 3, 4.
(4) Furthermore, by a suitable Bäcklund transfor-

mation, the rational solution of fj in the class
(1), (2), (3) above is respectively transformed to
the following.

(1) (f0, f1, f2, f3, f4) = (t, 0, 0, 0, 0), with
(α0, α1, α2, α3, α4) = (1, 0, 0, 0, 0),

(2) (f0, f1, f2, f3, f4) =
( t

3
,
t

3
,
t

3
, 0, 0

)
, with

(α0, α1, α2, α3, α4) =
(1

3
,
1
3
,
1
3
, 0, 0

)
,

(3) (f0, f1, f2, f3, f4) =
( t

5
,
t

5
,
t

5
,
t

5
,
t

5

)
, with

(α0, α1, α2, α3, α4) =
(1

5
,
1
5
,
1
5
,
1
5
,
1
5

)
.

We will sketch the proof of Theorem 1.1. Firstly,
we will get a necessary condition of the parameters
by comparing the residues of fj . Secondly, we will
transfer them to the fundamental domain of W̃ (A(1)

4 )
by Bäcklund transformations. Lastly, we obtain a
sufficient condition by comparing the residues of an
auxiliary function G (see (4.1)).

2. Necessary condition. In this section,
we will give a necessary condition for the A4 Painlevé
equation to have rational solutions. We will compare
the residues of fj . If (fj)0≤j≤4 is a rational solution
of the A4 Painlevé equation, fj is expanded at t =
c ∈ C, ∞ in the following way.

Proposition 2.1. If (fj)0≤j≤4 is a rational
solution of the A4 Painlevé equation and fj have

poles at c ∈ C, then c is a simple pole and the
residues of fj are given by one of the following :
(1)

(Resc fi, Resc fi+1, Resc fi+2, Resc fi+3, Resc fi+4)
= (1,−1, 0, 0, 0) (for some i = 0, . . . , 4).

(2)
(Resc fi, Resc fi+1, Resc fi+2, Resc fi+3, Resc fi+4)
= (−1, 0, 1, 0, 0) (for some i = 0, . . . , 4).

(3)
(Resc fi, Resc fi+1, Resc fi+2, Resc fi+3, Resc fi+4)
= (0, 3, 1,−1,−3) (for some i = 0, . . . , 4).

Proposition 2.2. Assume that (fj)0≤j≤4 is a
rational solution of the A4 Painlevé equation. Then
the Laurent expansion of fj at t = ∞ must be one of
the following. Furthermore its coefficients are deter-
mined inductively.
Type A i) For some i = 0, . . . , 4,

fi = t+(−αi+1 +αi+2−αi+3 +αi+4)t−1 +O(t−2),
fi+k =(−1)k+1αi+kt−1 +O(t−2) (1≤k≤4).

Type A ii) For some i = 0, . . . , 4,
fi =t+(−1+αi −2αi+2 +2αi+4)t−1 +O(t−2),
fi+1 =t+(1−αi+1 −2αi+2 +2αi+4)t−1 +O(t−2),
fi+2 =αi+2t

−1 +O(t−2),
fi+3 =−t+(−3αi+4 −αi +αi+1 +3αi+2)t−1 +O(t−2),
fi+4 =−αi+4t

−1 +O(t−2).
Type B For some i = 0, . . . , 4,
fi = t/3+(αi+1−αi+2−3αi+3−αi+4)t−1 +O(t−2),
fi+1 = t/3+(αi+2−αi−αi+3 +αi+4)t−1 +O(t−2),
fi+2 = t/3+(αi−αi+1 +αi+3 +3αi+4)t−1 +O(t−2),
fi+3 =3αi+3t

−1 +O(t−2),
fi+4 =−3αi+4t

−1 +O(t−2).
Type C

fk = t/5+(3αk+1+αk+2−αk+3−3αk+4)t−1

+O(t−2) (0≤k≤4).
Proposition 2.3. Assume that (fi)0≤i≤4 is a

rational solution of the A4 Painlevé equation. Then
fi are odd functions.

Proof. The map

(fi(t))0≤i≤4 −→ (−fj(−t))0≤i≤4

preserves (A4). This map keeps the Types in Propo-
sition 2.2 and the parameters (αi)0≤i≤4. From the
uniqueness of the coefficients of the Laurent expan-
sions of fi at t = ∞, fi(t) = −fi(−t). Therefore, fi

are odd functions.
By comparing the residues of fj , we obtain

a necessary condition of the parameters where
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(fj)0≤j≤4 is a rational solution of (A4).
Theorem 2.4. Assume that the A4 Painlevé

has a rational solution. Then it is necessary that the
parameters (α0, α1, α2, α3, α4) satisfy one of the fol-
lowing conditions. (Here we identify the parameters
that are transformed to each other by the Bäcklund
transformation π.)
(1) (n0, n1, n2, n3, n4) with n0, . . . , n4 ∈ Z,

(2)
(

n1
3 − n3

3 , n1
3 , n1

3 + n4
3 , n3

3 ,−n4
3

)
mod Z

with n1, n3, n4 ∈ {0, 1, 2},
(3)

(
n1
5

+ 2n2
5

+ 3n3
5

, n1
5

+ 2n2
5

+ n3
5

, n1
5

, n1
5

+ n2
5

,
n1
5 + n3

5

)
mod Z

with n1, n2, n3 ∈ {0, 1, 2, 3, 4}.
Type A, B and C correspond to (1), (2) and (3),

respectively.
3. Fundamental domain. We will transfer

the parameters given in Theorem 2.4 to the funda-
mental domain of the affine Weyl group W̃ (A(1)

4 ) by
Bäcklund transformations of the A4 Painlevé equa-
tion.

Theorem 3.1. I) The parameters in Theo-
rem 2.4 (1) are transformed to (1, 0, 0, 0, 0).

II) The parameters in Theorem 2.4 (2) are trans-
formed to one of

(1
3
,
1
3
,
1
3
, 0, 0

)
,

(2
3
, 0, 0,

1
3
, 0

)
,

(1
3
, 0, 0,

2
3
, 0

)
,

(
0,

1
3
, 0,

1
3
,
1
3

)
,

(
0,

1
3
,
1
3
,
1
3
, 0

)
,

(
0, 0,

1
3
, 0,

2
3

)
,

(
0, 0,

2
3
, 0,

1
3

)
, (1, 0, 0, 0, 0).

III) The parameters in Theorem 2.4 (3) are
transformed to one of

(1
5
,
1
5
,
1
5
,
1
5
,
1
5

)
, (1, 0, 0, 0, 0),

(3
5
, 0,

1
5
,
1
5
, 0

)
,

(1
5
, 0,

2
5
,
2
5
, 0

)
,

(1
5
,
2
5
, 0, 0,

2
5

)
,

(3
5
,
1
5
, 0, 0,

1
5

)
.

The case (1) and the following cases are impor-
tant because the other cases do not give rational so-
lutions.

Proposition 3.2. If the parameters in Theo-
rem 2.4 (2) transformed to

(
1
3
, 1

3
, 1

3
, 0, 0

)
,

(αi, αi+1, αi+2, αi+3, αi+4)

=




±1
3
(1, 1, 1, 0, 0) mod Z

±1
3
(1,−1,−1, 1, 0) mod Z,

holds for some i = 0 . . . , 4.

If the parameters in Theorem 2.4 (3) trans-
formed to

(
1
5 , 1

5 , 1
5 , 1

5 , 1
5

)
,

(αi, αi+1, αi+2, αi+3, αi+4)

=




j

5
(1, 1, 1, 1, 1) mod Z

j

5
(1, 2, 1, 3, 3) mod Z,

holds for some i = 0, . . . , 4.
4. Sufficient condition. In this section, we

will give a sufficient condition for the A4 Painlevé
equation to have a rational solution. We will check
the fifteen cases given in Theorem 3.1. From Propo-
sition 4.1 below, we can prove the main theorem.

Proposition 4.1. Among the fifteen cases
given in Theorem 3.1, rational solutions exist only
for the following three cases:

Case I, that is,
(α0, α1, α2, α3.α4) = (1, 0, 0, 0, 0),
(f0, f1, f2, f3, f4) = (t, 0, 0, 0, 0),

(α0, α1, α2, α3, α4) =
(

1
3 , 1

3 , 1
3 , 0, 0

)
in Case II,

(f0, f1, f2, f3, f4) =
(

1
3t, 1

3t, 1
3t, 0, 0

)
,

(α0, α1, α2, α3, α4)=
(

1
5
, 1

5
, 1

5
, 1

5
, 1

5

)
in Case III,

(f0, f1, f2, f3, f4) =
(

1
5t, 1

5t, 1
5t, 1

5t, 1
5t

)
.

Proof. In the above three cases, we obtain ra-
tional solutions easily. We will consider the other
twelve cases.

We take the following auxiliary function:

(4.1) G = f0f1f2+f1f2f3+f2f3f4+f3f4f0+f4f0f1.

If G has a pole at t = c ∈ C, Resc G is αi+2 +
αi+4, αi or αi+1 + αi+4, for some i = 0, . . . , 4.
Therefore, Resc G is non-negative. Since it is eas-
ily checked that Res∞ G is positive except for the
case (α0, α1, α2, α3, α4) =

(
0, 1

3 , 1
3 , 1

3 , 0
)
, (A4) does

not have rational solutions in the eleven cases other
than

(
0, 1

3 , 1
3 , 1

3 , 0
)
.

We will consider the case of
(
0, 1

3 , 1
3 , 1

3 , 0
)
. In

this case, Res∞ G = 0 and we have:

f0 =
1
3
t − t−1 − 6t−3 − 90t−5 + · · · ,

f1 =
1
3
t,

f2 =
1
3
t,

f3 = t−1 + 6t−3 + 90t−5 + · · · ,

f4 ≡ 0.
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If f0 and f3 have a pole at c ∈ C, Resc f3 = −1
and Resc f0 = 1 from Proposition 2.1 (2). If c ∈ C \
{0} is a pole of f0 and f3, −c is also a pole since f0

and f3 are odd by Proposition 2.3. Because Res∞ f0

and Res∞ f3 are odd integers, t = 0 is a pole of f0

and f3. Therefore, f0 and f3 are expressed as

f3 =
−1
t

+
k∑

j=1

( −1
t − cj

+
−1

t + cj

)
,

f0 =
1
3
t +

1
t

+
k∑

j=1

( 1
t − cj

+
1

t + cj

)
.

Since the coefficient of t−1 in f3 is negative and the
coefficient of t−1 in f0 is positive, it contradicts the
Laurent expansions of f0 and f3 at t = ∞.

Remarks. Murata [5] used the analysis of the
Riccati equation to obtain the sufficient condition.
But we do not use the analysis of the Riccati equa-
tion. In the case f3 = f4 = 0 and α3 = α4 = 0,
(A4) is equivalent to the fourth Painlevé equation.
Therefore, we also showed that rational solutions of
the fourth Painlevé equation can be classified only
by the method of residue calculus.
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