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Values of absolute tensor products
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Abstract:

We study values of absolute tensor products (multiple zeta functions) at integral

arguments. We obtain a simple formula for the absolute value of the double sine function. We
express values of the multiple gamma function related to the functional equation.
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1. Introduction. We study values of abso-
lute tensor products (multiple zeta functions) of two
types: ((s,F,,) ® --- ® ((s,Fp,.) and the multiple
gamma function I',.(s).

Let p and ¢ be prime numbers. In Re(s) > 0 we
define ¢, 4(s) as follows:
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In [7, 8], {p,q(s) is identified with the absolute tensor
product ¢(s,F,) @ ((s,F,), where ((s,F,) = (1 —
p~ %)~ ! is the Hasse zeta function of the finite field F,,
(or of the scheme Spec(F,)). We recall the following
results proved in [7, 8.
Theorem A. Let p and q be distinct prime
numbers.
(1) Cp,q(s) converges absolutely in Re(s) > 0.
(2) Cp,q(8) has an analytic continuation to all s € C
as a meromorphic function of order 2.
(3) All the zeros and poles are simple and they are
located as follows:
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(4) Cp,q(s) has the following functional equation:
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Theorem B. Let p be a prime number.
(1) Cpp(s) converges absolutely in Re(s) > 0.
(2) Cpp(s) has an analytic continuation to all s € C
as a meromorphic function of order 2.
(3) Cp,p(s) has the following zeros and poles:
2min
log p

27
poles at s = —
log

zeros at s = forn € Z>q of order n +1

n forn € Zsy of ordern —1
D >

(4) Cpp(s) has the functional equation:
Cpp(—5) = Cp,p(s)ilpg(l - pis)Q
i(logp)? , Hmi
X exp ( p— e )

We remark that Theorems A and B remind us
of the simple result:
Theorem C. Let p be a prime number, and

let
pns>

S

Cp(s) =exp (Z
n=1

in Re(s) > 0. Then:
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(1) ¢p(s) converges absolutely in Re(s) > 0.

(2) ¢p(s) has an analytic continuation to all s € C
as a meromorphic function of order 1.

(3) Cp(s) has no zeros, and (,(s) has the poles at

€ (2mi/logp)Z, which are all simple.

(4) ¢p(s) has the functional equation (p(—s) =
&ols)(=p).
Of course, Theorem C is easily seen from the

expression

G(s)=(1—p)7".

On the other hand, Theorems A and B are not so
easy to show and we used the theory of double sine
functions developed in [2, 5, 6]. In this paper we first
study the values (, ,(—m) for integers m > 1. We
obtain the following results:

Theorem 1. Let p and g be prime numbers.
Then

[Cpa(=m)| = V(P = 1)(¢™ ~ 1)

for integers m > 1.
Theorem 2.

Gaa(—1) = —e™/8,
Next, we study the triple case

Cppn(S)
oo
= exp (—4; Z %p‘m
+% <zslogp >§:nl
(et (e
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We report the following concrete result:
Theorem 3.

‘C2,2,2(7

We recall that Quillen [14] and Lichtenbaum [11]
gave an excellent interpretation for

[Gp(=m)| ™!
as the order of K-group
‘Cp<_m)‘_1 = #Kom—1(Fp).

It would be interesting to give some interpretation
such as
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where F; is the (virtual) field of one element (see
[10, 12, 13, 15]).

Next, we investigate values of the multiple
gamma function considered as a multiple zeta func-
tion (absolute tensor product). We recall that the
multiple gamma function I',.(s) of Barnes [1] is de-
fined as

L) = II

ni,...,nr>0

0
o (Lt
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(ny +---
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where

Cr(’uhs) = Z (nl +...+nr+s)—w

from Lerch’s formula (1894) for the usual gamma
function T'(s). As explained by Manin [12, p. 134]
I'1(s) is viewed as the zeta function of the “dual infi-
nite dimensional projective space over F1” P> (Fy):

-1

Ti(s) = (s, P(F1) = | [[(s +n)

n>0

Then, I',.(s) is obtained as an absolute tensor prod-
uct:

Ty (s) = (D1 (s)®) 0"

Hence, from the viewpoint of Quillen [14] and Licht-
enbaum [11], it would be interesting to study values
at s = —n (n > 0) of I'(s).

It turns out that I',.(s) has a functional equation
s <> r—s, and that the value at s = —n is intimately
related to the value at s = r + n. Here we describe
the cases r = 1 and 2. (We refer to [9] for a more
general treatment.)

Theorem 4. Letn > 0 be an integer. Then:

(1) T1(s)(s +n)]s=—n = (=1)"/(nlv/2).
(2) T1(1+n) =nl/V2r.
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Theorem 5. Letn > 0 be an integer. Then:

(1)
La(s)(s + n)n—i-l ls=—n
— (,1)(”("+1))/26C'(*1)

x (2m)~(FD/2(q121 . pl) 7L

(2) T2(2+n) = <D (2r)(HD/2(1121 ... pl) L,

It is easy to identify values in Theorems 4 and 5
by #GL,(F1) = n! = #S,, and it might be possible
as in [4] to interpret these values via the order of
a suitable K-group of P>(F{)®" for r = 1 and 2;
we notice that Manin [12] and Soulé [15] identify the
K-group K,,,(F1) as the stable homotopy group 7¢,.

We remark that relations between (1) and (2)
in Theorems 4 and 5 are indicating the functional
equation I',.(s) < I'.(r—s) and they are reformulated
using the derivatives of the multiple sine function

Sp(s) =T, (s) "' Tp(r — s) 1"

(see [5] for the general theory) as follows:
Theorem 6. Letn > 0 be an integer. Then:

(1) (S1(8)/(s +n))|s=—n = (=1)"2m.

(2) (S2(8)/(s + )" e=n =
(2m)n+L,

It would be valuable to report simple facts about

(71)(n(n+1))/2

absolute tensor products of basic zeta functions over
F,. Zeta functions of the affine space and the pro-
jective space over F'; are given as

1
C(S’All‘il) = S—k
and

s,PL ) = !
¢ (5 Pr,) s(s—=1)---(s—k)

Hence the corresponding absolute tensor products
are

C(S,A’l?l)@ ¢ (s,A’P?l) = (s—(k1+-- '+k,q))(*1y
and

C(S,P’R) ®~~®C(s,P’]}T1)

S| TS

We refer to [4] for further study.
2. ((s,Fp,)®---®((s,Fp,).
Proof of Theorem 1.

(1) p # q case: From the functional equation (The-
orem A (4)) for {, 4(s) we have
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Hence we get

Cp,g(—m)

n
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Thus

(2) p = ¢ case: The functional equation (Theo-
rem B (4)) implies that

Cp,p(_m) = Cp,p(m)ilpm(l - pim)z

i(logp)? , 5mi
xexp( o m 5

with

Cpp (m) =exp (;ﬂ_LiQ (™)

_ (1 - o m) Lil(pm)>




188 N. KUROKAWA

=(1—p ™)exp (;Liz(p"”)

tlo o —m
+ 2§me11(p )>,

where we use the polylogarithm

oo
u’ﬂ

Li.(u) = —.
n=1 n’

Hence
Cp,p(_m):(pm_l)
iy i(logp)?
xexp< 27Tng(p ) ™

tlogp oL
1 m—1)— —
+— - mlog(p™ —1) — = )

gives
|Cpp(—m)[ =p™ — 1.
[]

Proof of Theorem 2. The calculation in the
above proof of Theorem 1 shows that

B i . (1 i(log2)?  5mi
CQ’Q(_I)_GXP(_%LIQ(2>_ w6 )

Hence, using Euler’s result

1 2 1
Liy () =T —(log 2)?

2 12 2
we have
7.
<272(—1) = exp (—8Z>
= —e(m/8)i
_ Verve V2-2
N 2 2

[]

Proof of Theorem 3. From the explicit ex-
pression for the triple sine function S3(x) shown in
[5] using another multiple sine function S,(z) we get

Sy(x) = VAT Sy (2)1/285 () 7328, ()

and

islogp -t
Cp’p,p(s):&%( o )

log p)3 3(logp)?
xexp(—(48772) s3—i (1677) 52

logp ,7r>

+

5 STy

[Vol. 81(A),

in Re(s) > 0 at first. Since the both sides are mero-
morphic functions on all s € C, this identity holds
for all s € C. In particular

islogp -1
Copp(—8) = S3 <_ o )

1 3 1 2
X exp (( 08 p) §3 — i3( 08 p) s

4872 167
1
~CEL4i7).

Hence, using

S3(—x) = 64(3)/4”283(—x)l/zSg(—x)_3/281(—x)
= _64(3)/4w233(x)1/252(@3/231(x)
= —S3(2)Sz ()’

we have

islogp -1 islogp -3
Cp,p,p(_s):_&?( o ) 32( o

1 3 1 2
X exp (( ogp) $3 _ i3( ogp) 52

4872 167
It
- ngng)

In particular

il -3
Cp,p,p(*m) = *Cp,p,p(m)‘% <zm%(zgp)

logp)?
X exp ((24772) m3 — (logp)m) .

Since
|S2(x)] =1 for z € iR,

we see that

|Cp.p.p(=m)]
= [Gppp ()] exp (“;’fffw - <1ogp>m) .
Hence
|C2.2,2(=1)] = [C2,2,2(1)] exp ((1;%732)3 —log 2>
with
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|C2,2,2(1)]

1 . /1 log2_. (/1
= exp <_47T2L13 (2) T gz 2 (2)
1

we have

(Cana(1)] = exp (

and consequently

7¢(3)  (log2)?
_ _ log 2
3om2  o4p2 08

aat-Dl=exr (-5,
O
3. T.(s).
Proof of Theorem 4.
(1) Notice that
1
Ii(s)(s+n)= EF(S)(S +n)
_ 1 T(s)s(s+1)---(s+n)
Vors(s+1)---(s+n—1)
! T(s+n+1)
C V2rs(s+1)--(s+n—1)
Hence
1 (1)
D@ s tnl=— = T i) D)
gl
Vor nl

(2) This is easily seen from I'1(s) = I'(s)/v/27 and
the well-known formula I'(n + 1) = nl.

]
Proof of Theorem 5.
(1) From
[a(s) = Fa(s+ 1) (s)
= F2($+2)F1(5)F1(8+1)
=To(s+n+1)T1(s)T1(s+1)---T1(s+n)
we have
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Da(s) (s + )" o
— Dy (s +n+ 1)(T1(s)(s +n)) (D1 (s + 1)(s +n))
(T1(s+n)(s+n))|s=—n

(-p"1 (==t 1
=r= \/ﬂTL')( V271 (n—l)!)
<<1)°1>
V2r 0!
=/ (71 (—1)(n(nF1))/2 (g )= (n+1)/2
X (1!2! .. -n!)_17

where we used the fact

Ta(1) = exp((2(0, 1)) = exp(¢’(~1))-
(2) Using the periodicity I'a(s 4+ 1) = T'y(s)'1(s)~?
we get
[y(24n) =Ty(14+n)T1(1+n)""
Fg(]. + TL) = Fg(n)Fl(n)_l

[9(2) = To(D)T (1)t

Hence

[2(2+n) = a(1)(Cy(DT1(2) - Ti(1+n)) 7!
=D @) TD/2 (1121 )L

L]
Proof of Theorem 6.

(1) Since S1(s) = 2sin(ws), it is easy to see that
Si(—n) = (=1)"2nx.
(2) We show that
Sa(s)
_ (_1)(n(n+1))/2(27r)n+1 (S + n)n+1
+0 ((s+n)""?)
as s — —n. First, the case n = 0 is equivalent
to S4(0) = 27, which is proved in [3]. Next, for
a general n > 1 we get
Sa(s —n) = (1) T8, (5) 8, (s)"
from iterating the process
SQ(S - ].) = 52(8)51(8 - 1) = —SQ(S)Sl(S)
Hence
Sa(s—n)
= (—1)(n(n+1))/2 (27rs +0 (52)) (2rs+O (32))n
_ (_1)(n(n+1))/2(27T)n+18n+1 +0 (Sn+2>
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as s — 0. Thus
Sa(s)
= () 2 gy s
+O((s +n)"*?)
as s — —n. Consequently we obtain the desired
ST (—n) = (=1)CHD2 (2 (4 1)L,
[
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