On a certain invariant for real quadratic fields

By Seok-Min Lee and Takashi Ono

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland, 21218-2689, U. S. A. (Communicated by Shokichi Iyanaga, M. J. A., Oct. 14, 2003)

Abstract: Let $K = \mathbf{Q}(\sqrt{m})$ be a real quadratic field, \mathcal{O}_K its ring of integers and $G = \operatorname{Gal}(K/\mathbf{Q})$. For $\gamma \in H^1(G, \mathcal{O}_K^{\times})$, we associate a module M_c/P_c for $\gamma = [c]$. It is known that $M_c/P_c \approx \mathbf{Z}/\Delta_m \mathbf{Z}$ where $\Delta_m = 1$ or 2 and we will determine Δ_m .

Key words: Real quadratic field; fundamental unit; parity; continued fractions.

1. Introduction. This is a continuation and completion of [1]. Let m be a square free positive integer, $K = \mathbf{Q}(\sqrt{m})$ the corresponding real quadratic field, \mathcal{O}_K the ring of integers of K, \mathcal{O}_K^{\times} the group of units of K and $G = \operatorname{Gal}(K/\mathbf{Q}) = \langle s \rangle$. To each $\gamma = [c] \in H^1(G, \mathcal{O}_K^{\times})$, T. Ono [1] associated a module M_c/P_c where

$$M_c = \{ \alpha \in \mathcal{O}_K; c^s \alpha = \alpha \},$$

$$P_c = \{ p_c(z) = z + c^s z, z \in \mathcal{O}_K \}.$$

The module M_c/P_c is of order 1 or 2 and depends only on the cohomology class $\gamma = [c]$. Actually the case $c = \varepsilon$, the fundamental unit of K, with $N\varepsilon = 1$, is essential and he put

$$\Delta_m = [M_{\varepsilon} : P_{\varepsilon}].$$

So the problem is to determine $\Delta_m = 1$ or 2 in terms of m. On the basis of Lee's computation for m < 1000, Ono conjectured that

- (I) $m \equiv 1 \pmod{4} \Rightarrow \Delta_m = 1$,
- (II) $m \equiv 2 \pmod{4} \Rightarrow \Delta_m = 2$,
- (III) $m \equiv 3 \pmod{4}$;

$$a_s \equiv 1 \pmod{2} \Rightarrow \Delta_m = 1$$

 $a_s \equiv 0 \pmod{2} \Rightarrow \Delta_m = 2$

where $\sqrt{m} = [a_0; \overline{a_1, \dots, a_{s-1}, a_s, a_{s-1}, \dots, a_1, 2a_0}],$ the standard continued fraction expansion.

In this paper, we shall prove that (I), (II), (III) are all true (Theorem 9, Theorem 10, Theorem 13).

2. Notation. Let $K = \mathbf{Q}(\sqrt{m}), m > 0$, square free. Let $\{1, \omega\}$ be the standard basis of \mathcal{O}_K ;

$$\omega = \begin{cases} \sqrt{m}, & m \equiv 2, 3 \pmod{4}, \\ \frac{1+\sqrt{m}}{2}, & m \equiv 1 \pmod{4}. \end{cases}$$

We write the fundamental unit ε as $\varepsilon = u + v\omega$, $u, v \in \mathbf{Z}$. Note that (u, v) = 1. Following [1], we put

$$d = (v, u - 1), \quad e = (v, u + 1),$$

$$D = v/e$$
.

In [1], we find $[M_{\varepsilon}:P_{\varepsilon}]=$

(1)
$$\Delta_m = \frac{d}{(D,d)}.$$

Proposition 1. $\Delta_m = 1 \Leftrightarrow de \mid v$.

Proof. $d/(D,d) = 1 \Leftrightarrow d = (D,d) \Leftrightarrow d \mid D \Leftrightarrow d \mid (v/e) \Leftrightarrow de \mid v.$

3. Proof of (I), (II).

Proposition 2. If v is odd, then $\Delta_m = 1$.

Proof. Note that (v, u - 1) and (v, u + 1) are odd divisors of v but $(u + 1, u - 1) \mid 2$. Then (v, u - 1) and (v, u + 1) are mutually prime divisors of v. Hence we get $(v, u - 1)(v, u + 1) \mid v$.

When v is even (then u is odd), let v' = v/2 and u' = (u - 1)/2. Then

$$d = (v, u - 1) = (2v', 2u') = 2(v', u') = 2d'$$

with d' = (u', v') and

$$e = (v, u + 1) = (2v', 2u' + 2) = 2(v', u' + 1) = 2e'$$

with e' = (v', u'+1). Note that d' and e' are mutually prime divisors of v'. Hence we have

(2)
$$d'e' = (v', u')(v', u' + 1) \mid v',$$

that is,

(3)
$$d' \left| \frac{v'}{e'} = \frac{2v'}{2e'} = \frac{v}{e} = D.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 11R11, 11A55; Secondary 11A07.

We have two cases;

- (i) $2d'e' \mid v'$: we have $de = 4d'e' \mid 2v' = v$ so $\Delta_m = 1$ by Proposition 1.
- (ii) $2d'e' \nmid v'$: we have $de \nmid v$ and $d \nmid (v/e) = D$. Since $d' \mid D$, (D,d) = (D,2d') = d' and hence $\Delta_m = d/(D,d) = (d/d') = 2$.

Therefore we have proved $\Delta_m = 1$ or 2 for any m and;

Proposition 3. If v is even, using the notations above,

$$2d'e' \mid v' \Leftrightarrow \Delta_m = 1$$
,

or equivalently,

$$2d'e' \nmid v' \Leftrightarrow \Delta_m = 2.$$

Proposition 4. If v is even (and u is odd), let $v \ge 1$ be such that

$$2^{\nu} \parallel v$$

i.e. the largest positive integer such that $2^{\nu} \mid v$. Then

$$u \equiv \pm 1 \pmod{2^{\nu}} \Leftrightarrow \Delta_m = 2.$$

Proof.

(Case 1) $\nu = 1$: $v \equiv 2 \pmod{4}$ so v' is odd, and $2d'e' \nmid v'$. Hence $\Delta_m = 2$ by Proposition 2. On the other hand, u is odd so $u \equiv \pm 1 \pmod{2}$.

(Case 2) $\nu \geq 2$: $2^{\nu} \| v$ then $2^{\nu-1} \| v' = (v/2)$. Since u' = (u-1)/2, note that $u \equiv \pm 1 \pmod{2}^{\nu} \Leftrightarrow$ one of u+1, $u-1 \equiv 0 \pmod{2}^{\nu} \Leftrightarrow$ one of u', $u'+1 \equiv 0 \pmod{2}^{\nu-1}$.

(\Leftarrow) If $u \not\equiv \pm 1 \pmod{2^{\nu}}$, neither u' nor u' + 1 is congruent to $0 \pmod{2}^{\nu-1}$. Since (v', u') and (v', u' + 1) are mutually prime, we have $2^{\nu-1} \nmid (v', u')(v', u' + 1)$. But since $(v', u')(v', u' + 1) \mid v'$ and $2^{\nu-1} \mid v'$, we have $2(v', u')(v', u' + 1) \mid v'$ and thus $\Delta_m = 1$.

(\$\Rightarrow\$) If $u \equiv \pm 1 \pmod{2^{\nu}}$, one of u', $u' + 1 \equiv 0 \pmod{2^{\nu-1}}$. So $2^{\nu-1} \mid (v', u')(v', u' + 1)$ and $2^{\nu} \mid 2(v', u')(v', u' + 1)$. But $2^{\nu} \nmid v'$ so $2(v', u')(v', u' + 1) \nmid v'$ and hence $\Delta_m = 2$.

Proposition 5. If v is even but $8 \nmid v$ then $\Delta_m = 2$.

Proof. For $\nu = 2$ or 4 (resp.), odd u should be congruent to $\pm 1 \pmod{2}$ or $\pmod{4}$ (resp.). \square

Lemma 6. For $\nu \geq 3$,

$$a^2 \equiv 1 \pmod{2}^{\nu} \Leftrightarrow a \equiv \pm 1 \pmod{2^{\nu}}$$

 $or \ a \equiv \pm (2^{\nu-1} - 1) \pmod{2^{\nu}}.$

Proof. First, $(\pm 1)^2 = 1$ and $(\pm (2^{\nu-1} - 1))^2 =$

 $2^{2\nu-2}-2^{\nu}+1\equiv 1\pmod{2}^{\nu}$ since $2\nu-2\geq \nu$ for $\nu\geq 3$. It is known that the unit group mod 2^{ν} is isomorphic to the direct product of two cyclic groups of order 2 and $2^{\nu-2}$

$$(\mathbf{Z}/2^{\nu}\mathbf{Z})^{\times} \simeq \langle -1 \rangle \times \langle 5 \rangle$$

where $(-1)^2 \equiv 1$ and $5^{2^{\nu-2}} \equiv 1 \pmod{2^{\nu}}$. Let $a \in (\mathbf{Z}/2^{\nu}\mathbf{Z})^{\times}$ such that $a^2 \equiv 1 \pmod{2^{\nu}}$ other than ± 1 . We can write $a = (-1)^i 5^j$ with i = 0 or 1 and $1 \le i < 2^{\nu-2}$.

$$a^2 \equiv 1 \pmod{2^{\nu}} \Leftrightarrow 5^{2j} \equiv 1 \pmod{2^{\nu}}$$

 $\Leftrightarrow 2^{\nu-2} \mid 2j$
 $\Leftrightarrow 2^{\nu-3} \mid j$.

Since $1 \le j < 2^{\nu-2}, j = 2^{\nu-3}$. So we have only four elements $\pm 1, \pm 5^{2^{\nu-3}}$, with square $\equiv 1 \pmod{2^{\nu}}$. \square

Lemma 7. If a, b are integers and b is even such that $a^2 - mb^2 = 1$ and $2^{\nu}||b$ where $\nu \geq 2$ then $a \equiv \pm 1 \pmod{2^{\nu+1}}$.

Proof. First note that

(4)
$$2^{\nu} || b \Rightarrow a^2 \equiv 1 \pmod{2^{2\nu}}.$$

Then by the previous lemma, $a \equiv \pm 1$ or $\pm 2^{2\nu-1} - 1$) $\pmod{2^{2\nu}}$. Since $\nu \geq 2$, $2\nu - 1 \geq \nu + 1$ so $\pm (2^{2\nu-1} - 1) \equiv \mp 1 \pmod{2^{\nu+1}}$.

Proposition 8. If $\varepsilon = u + v\sqrt{m}$ with v even, then $\Delta_m = 2$.

Proof. If $8 \nmid v$ then $\Delta_m = 2$ by Proposition 5. If $2^{\nu} \parallel v$ with $\nu \geq 3$ then $u \equiv \pm 1 \pmod{2^{\nu}}$ by Lemma 7, hence $\Delta_m = 2$ by Proposition 4.

Theorem 9. If $m \equiv 2 \pmod{4}$ then $\Delta_m = 2$. For $m \equiv 3 \pmod{4}$, $\Delta_m = 1 \Leftrightarrow v$ is odd.

Proof. If $m \equiv 2 \pmod{4}$ then $1 = u^2 - mv^2 \equiv u^2 - 2v^2 \pmod{4}$. Since all squares mod 4 are 0 and 1, only possibility is $v^2 \equiv 0$ and $u^2 \equiv 1$. So v is even. The rest follows from Proposition 2 and Proposition 8.

Theorem 10. If $m \equiv 1 \pmod{4}$ then $\Delta_m = 1$.

Proof. By Proposition 2, we may assume that v is even. Denote $\varepsilon = u + v\omega = a + b\sqrt{m}$ where a = u + (v/2) and b = v/2. Then $1 = a^2 - mb^2 \equiv a^2 - b^2 \pmod{4}$. Since 0,1 are all squares mod 4, only possible case is for $b^2 \equiv 0$ and $a^2 \equiv 1 \pmod{4}$ and so a is odd and b is even. Now, consider the equation $a^2 - mb^2 \equiv 1 \pmod{8}$. The only square mod 8 are 0, 1, and 4. Since a is odd, $a^2 \equiv 1 \pmod{8}$. We have $b^2 \equiv 0$ or 4 (mod 8), and $m \equiv 1$ or $m \equiv 5 \pmod{8}$. Only possible case is $b^2 \equiv 0 \pmod{8}$. We get $b \equiv 0$

(mod 4) and so $8 \mid v$. Let $\nu \geq 3$ be the integer such that $2^{\nu} \mid v$. Then $2^{\nu-1} \mid b$, and we get $a \equiv \pm 1 \pmod{2^{\nu}}$ by Lemma 7. Since $2^{\nu} \nmid b$, $u = a - b \equiv \pm 1 - 2^{\nu-1} \not\equiv \pm 1 \pmod{2^{\nu}}$. Then by Proposition 4, we get $\Delta_m = 1$.

- **4.** Proof of (III). Now it remains to determine Δ_m for $m \equiv 3 \pmod{4}$. In this section, we consider the continued fraction of $\sqrt{m} = [a_0; \overline{a_1, a_2, \ldots, a_r}]$. As for basic properties of continued fractions, see [2];
 - 1. the period r is odd \Leftrightarrow the equation $x^2 my^2 = -1$ has an integer solution. Since $N(\varepsilon) = +1$ if $m \equiv 3 \pmod{4}$, r is even.
 - 2. $a_0 = [\sqrt{m}]$ (the integer part), $a_r = 2a_0$, and $a_i = a_{r-i}$ for i = 1, ..., r-1, so $\sqrt{m} = [a_0; \overline{a_1, ..., a_{s-1}, a_s, a_{s-1}, ..., a_1, 2a_0}]$ where s = r/2.
 - 3. We can associate a finite continued fraction with a matrix product,

$$[a_0, a_1, \dots, a_n] \leftrightarrow \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix},$$

or inductively,

$$p_{-1} = 1$$
, $p_0 = a_0$, $p_i = a_i p_{i-1} + p_{i-2}$,
 $q_{-1} = 0$, $q_0 = 1$, $q_i = a_i q_{i-1} + q_{i-2}$.

Then

$$[a_0, a_1, \dots, a_n] = \frac{p_n}{q_n}.$$

We set $P_n = \begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix}$. Then we have

(5) $\det P_n = p_n q_{n-1} - q_n p_{n-1} = (-1)^{n+1}.$

If we write

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \gamma = \frac{a\gamma + b}{c\gamma + d}$$

where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{Z})$ and $\gamma \in \mathbf{R} - \mathbf{Q}$, then we have $[a_0, \dots, a_{n-1}, \gamma] = P_{n-1}\gamma$.

4. The fundamental unit $\varepsilon = u + v\sqrt{m}$ is given by $u = p_{r-1}, v = q_{r-1}$ if $m \equiv 2, 3 \pmod{4}$.

Lemma 11.

$$\begin{pmatrix} mq_{r-1} & p_{r-1} \\ p_{r-1} & q_{r-1} \end{pmatrix} = \begin{pmatrix} p_{r-1} & p_{r-2} \\ q_{r-1} & q_{r-2} \end{pmatrix} \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Proof. We have

$$\sqrt{m} = [a_0, a_1, \dots, a_{r-1}, a_0 + \sqrt{m}]$$

$$= P_{r-1}(a_0 + \sqrt{m})$$

$$= \frac{p_{r-1}(a_0 + \sqrt{m}) + p_{r-2}}{q_{r-1}(a_0 + \sqrt{m}) + q_{r-2}}.$$

So $\sqrt{m}(a_0q_{r-1}+q_{r-2}-p_{r-1})=a_0p_{r-1}+p_{r-2}-mq_{r-1}$, i.e.

$$mq_{r-1} = a_0 p_{r-1} + p_{r-2},$$

 $p_{r-1} = a_0 q_{r-1} + q_{r-2}.$

Lemma 12.

$$v = q_{s-1}(q_s + q_{s-2}) = q_{s-1}(a_s q_{s-1} + 2q_{s-2}),$$

$$mv = p_{s-1}(p_s + p_{s-2}) = p_{s-1}(a_s p_{s-1} + 2p_{s-2})$$

where s = r/2.

Proof.

$$P_{r-1} = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_{s-1} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_s & 1 \\ 1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} a_{s-1} & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= P_s \left(\begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} P_{s-1} \right)^T$$
$$= P_s P_{s-1}^T \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix}^{-1}.$$

Then by Lemma 11,

$$\begin{pmatrix} mq_{r-1} & p_{r-1} \\ p_{r-1} & q_{r-1} \end{pmatrix} = P_{r-1} \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= P_s P_{s-1}^T \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= P_s P_{s-1}^T$$

$$= \begin{pmatrix} p_s & p_{s-1} \\ q_s & q_{s-1} \end{pmatrix} \begin{pmatrix} p_{s-1} & q_{s-1} \\ p_{s-2} & q_{s-2} \end{pmatrix}$$

$$= \begin{pmatrix} p_{s-1}(p_s + p_{s-2}) & p_s q_{s-1} + p_{s-1} q_{s-2} \\ p_{s-1}q_s + p_{s-2}q_{s-1} & q_{s-1}(q_s + q_{s-2}) \end{pmatrix}.$$

Now remember that $v = q_{r-1}$.

Theorem 13. For $m \equiv 3 \pmod{4}$ and $\sqrt{m} = [a_0; \overline{a_1, a_2, \dots, a_r}]$, then $v \equiv a_s \pmod{2}$ where s = r/2. So $\Delta_m = 1 \Leftrightarrow a_s$ is odd.

Proof. By Lemma 12, $v \equiv a_s p_{s-1} \pmod{2}$ and $v \equiv a_s q_{s-1} \pmod{2}$. Since p_{s-1} and q_{s-1} are mutually prime by (5), they cannot be both even. One of the congruences says $v \equiv a_s \pmod{2}$.

References

- [1] Ono, T.: A Note on Poincaré sums for finite groups. Proc. Japan Acad., **79A**, 95–97 (2003).
- [2] Stark, H. M.: An Introduction to Number Theory. The MIT Press, Cambridge, Massachusetts-London, England (1978).