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Abstract:

Let K = Q(y/m) be a real quadratic field, Ok its ring of integers and G =
Gal(K/Q). For v € H'(G,0F), we associate a module M,./P. for v = [c].

It is known that

M./P. =~ Z/A,,Z where A,, =1 or 2 and we will determine A,,.

Key words:

1. Introduction. This is a continuation and
completion of [1]. Let m be a square free positive in-
teger, K = Q(y/m) the corresponding real quadratic
field, Ok the ring of integers of K, O} the group of
units of K and G = Gal(K/Q) = (s). To each v =
[c] € HY(G,0%), T. Ono [1] associated a module
M./ P, where

M. ={a € Ok;c’a=a},
P.={p.(z) =2z+c°z, z€ Ox}.

The module M./P. is of order 1 or 2 and depends
only on the cohomology class v = [¢]. Actually the
case ¢ = ¢, the fundamental unit of K, with Ne =1,
is essential and he put

Ay, =M. : P.].

So the problem is to determine A,, = 1 or 2 in terms
of m. On the basis of Lee’s computation for m <
1000, Ono conjectured that

(I) m=1 (mod 4) = A, =1,
(II) m=2 (mod 4) = A,, =2,
(III) m =3 (mod 4);

(mod 2) = A, =1
(mod 2) = A, =2

as =1

as =0

where \/m = [ag;ay, .. .., a1, 2ag),
the standard continued fraction expansion.

In this paper, we shall prove that (I), (II), (III)

are all true (Theorem 9, Theorem 10, Theorem 13).

2. Notation. Let K = Q(y/m), m > 0,
square free. Let {1,w} be the standard basis of O;
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vm,

W=y 1+/m
2 )

We write the fundamental unit € as ¢ = u + vw,
u,v € Z. Note that (u,v) = 1. Following [1], we put

2,3 (mod 4),

m=1 (mod 4).

d=(v,u—1), e=(v,u+1),
D =uvle.
In [1], we find [M, : P.] =
(1) A, = (ALCZ).

Proposition 1. A,, =1<de|v.

Proof. d/(D,d)=1<d=(D,d)<d|D <
d| (v/e) & de|w. Ul

3. Proof of (I), (II).

Proposition 2. If v is odd, then A,, = 1.

Proof. Note that (v,u — 1) and (v,u + 1) are
odd divisors of v but (u+ 1,u—1) | 2. Then (v,u —
1) and (v,u + 1) are mutually prime divisors of v.
Hence we get (v,u —1)(v,u+1) | v. 1

When v is even (then u is odd), let v' = v/2 and
u' = (u—1)/2. Then

d= (’U,U — 1) = (2’(}’,21},/) = 2(1)/,“/) — 2dl
with d’ = (v/,v") and
e=(v,ut1) = (20,20 +2) = 20,0’ +1) = 2¢/

with e/ = (v',u'4+1). Note that d’ and €’ are mutually
prime divisors of v’. Hence we have

(2) de' = (o, )0 o +1) |V,
that is,

! 2 !
(3) 7L =-Z_p

e 2¢e! e
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We have two cases;

(i) 2d’e’ | v': we have de = 4d'e’ | 2v' = v so A, =
1 by Proposition 1.

(ii) 2d’e¢’ 1 v': we have de f v and d t (v/e) = D.
Since d' | D, (D,d) = (D,2d') = d’ and hence
A, =d/(D,d)=(d/d")=2.

Therefore we have proved A,, = 1 or 2 for any m

and;

Proposition 3.
tions abowve,

If v is even, using the nota-

2d'e’ |V & A, =1,
or equivalently,
2d'e' 1o & A, =2.

Proposition 4.
let v > 1 be such that

If v is even (and u is odd),

2Y|| v
i.e. the largest positive integer such that 2" | v. Then

u=21 (mod?2”) & A, =2.

Proof.

(Case 1) v =1: v =2 (mod 4) so v’ is odd,
and 2d'¢’ 1 v'. Hence A,, = 2 by Proposition 2. On
the other hand, u is odd so v = +1 (mod 2).

(Case 2) v > 2: 2¥||v then 2V 710/ = (v/2).
Since v’ = (u — 1)/2, note that u = +1 (mod 2)" <
oneof u+1,u—1=0 (mod 2)” < one of v/, v’ +1
=0 (mod 2)*~ 1.

(<) Ifuz +1 (mod 2"), neither v’ nor v’ + 1

is congruent to 0 (mod 2)”~1.
Since (v',u’) and (v',uw + 1) are mutually
prime, we have 2V~ t (v/,u/)(v', v’ + 1). But
since (v/,u/)(v',u’' 4+ 1) | v' and 2V71| v/, we
have 2(v/, v’)(v', '+ 1) | v" and thus A, = 1.
(=) If u =+l (mod 2"), one of v/, v +1 =
0 (mod 2)*~1. So 27! | (v,u)(v',u' + 1)
and 2" | 2(v,uv)(v,v' +1). But 2” { v/ so
20, ) (v, v’ + 1) 1" and hence A,, = 2.
|

Proposition 5. If v is even but 8 1 v then
A, =2.

Proof. For v =2 or 4 (resp.), odd u should be
congruent to +1 (mod 2) or (mod 4) (resp.). [l

Lemma 6. For v > 3,
a>=1 (mod2)” < a=+1 (mod?2")
or a=+(2"""—1) (mod 2").

Proof. First, (£1)? =1 and (£(271 —1))? =

[Vol. T9(A),

22v=2 _2¥ + 1 =1 (mod 2)" since 2v — 2 > v for
v > 3. It is known that the unit group mod 2% is
isomorphic to the direct product of two cyclic groups
of order 2 and 2¥ 2

(2/272)" =~ (1) x (5)

where (—1)2 =1 and 52 ° =1 (mod 2). Let a €
(Z/2¥Z)™ such that a®> = 1 (mod 2¥) other than +1.
We can write @ = (—1)5/ with i =0 or 1 and 1 <
j<2v2
a®>=1 (mod?2”) & 5% =1
27225

&2V .

(mod 2")

Since 1 < j < 2¥72, j = 2¥73. So we have only four
elements 1, £52°° with square = 1 (mod 2¥). [
Lemma 7. If a, b are integers and b is even
such that a®> — mb* = 1 and 2¥|| b where v > 2 then
a=+1 (mod 2vT1).
Proof. First note that

(4) 2’|[b=a*=1 (mod 2?).

Then by the previous lemma, a = 1 or £2%/~1 1)
(mod 22¥). Since v > 2,2v—1 >v+1so0 (2%~ —
1) = F1 (mod 2v*1). |

Proposition 8. If ¢ = u+vy/m with v even,
then A,, = 2.

Proof. If 8 tv then A,, = 2 by Proposition 5.
If 2¥||v with v > 3 then u = £1 (mod 2¥) by
Lemma 7, hence A, = 2 by Proposition 4. U

Theorem 9. If m = 2 (mod 4) then A,, =
2. For m =3 (mod 4), A,, =1 < v is odd.

Proof. If m=2 (mod 4) then 1 = u? —mv? =
u? — 2v% (mod 4). Since all squares mod 4 are 0
and 1, only possibility is ¥ = 0 and u?> = 1. So
v is even. The rest follows from Proposition 2 and
Propositon 8. U

Theorem 10. If m =1 (mod 4) then A, =

Proof. By Proposition 2, we may assume that
v is even. Denote ¢ = u + vw = a + by/m where a =
u+ (v/2) and b = v/2. Then 1 = a? — mb? = a® —
b (mod 4). Since 0,1 are all squares mod 4, only
possible case is for b = 0 and a®> = 1 (mod 4) and
so a is odd and b is even. Now, consider the equation
a?—mb? =1 (mod 8). The only square mod 8 are 0,
1, and 4. Since a is odd, a®> =1 (mod 8). We have
b>=0or4 (mod8),and m=1or m=>5 (mod 8).
Only possible case is b> = 0 (mod 8). We get b= 0
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(mod 4) and so 8 | v. Let v > 3 be the integer
such that 2”||v. Then 27! b, and we get a = +1
(mod 2”) by Lemma 7. Since 2 { b, u = a — b =
+1—2""1 £ +1 (mod 2¥). Then by Proposition 4,
we get A, = 1. Ul
4. Proof of (III). Now it remains to de-
3 (mod 4). In this sec-
tion, we consider the continued fraction of  /m =
[ap; @1, Gz, -~ -, ar|. As for basic properties of contin-
ued fractions, see [2];
1. the period r is odd < the equation 2 — my? =
—1 has an integer solution. Since N(g) = +1 if
m =3 (mod 4), r is even.

termine A,, for m =

2

2. a9 = [v/m] (the integer part), a, = 2ag,
and a; = ap—; for ¢ = 1,....,r — 1, so
Vvm = [aoiai,..., 51,05, a5_1,...,a1,2aq]

where s = r/2.
3. We can associate a finite continued fraction with
a matrix product,

[a a a ](_) ap 1 aq 1
0, U1y ..., Un 1 0 1 0
.<an 1> _ (pn pn—1>
1 0 dn qn—1 ’

Po = Go, Pi = QiPi—1 + Pi—2,

or inductively,
P-1= 1)

g-1=0, go=1, g =a;q;—1+q—2.

Then
Pn
[ao, at, .. .,an] = —.
dn
We set P, = ( " p"_1>. Then we have
dn gn—1
(5) det P, = pn@n—1 — @nPn—-1 = (_1)n+1.
If we write
a b _ay+b
c d T= cy+d

where (Z Z) € GL3(Z) and v € R — Q, then

we have [ag,...,an—1,7] = Pn-17.
4. The fundamental unit € = u + v/m is given by

U=Pr_1, V= ¢gr—1 if m=2,3 (mod 4).

Lemma 11.
(qu—l pr—1> _ (pr_1 pr_2> (ao 1>
Pr—1 qr—1 qr—1 Q4r—2 1 0

Proof. We have
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\/E = [G/Oa ai,...,0r-1,00 + \/E]
= r—l(aO + \/E)
_ pr—1(ao + v/m) + pr—a
qr—1(ao + v/m) + gr—o2

So vm(aoqr—1 + ¢r—2 — Pr—1) = AoPr—1 + Pr—2 —
mq,_1, i.e.

MGr—1 = aoPr—1 + Pr—2,
Pr—1 = aoq¢r—1 + qr—_2.
Lemma 12.

U= q$—1(q$ + Qs—2) = Qs—l(ast—l + 2(]s—2)a
mv = ps—l(ps +ps—2) = ps—l(asps—l + 2ps—2)

where s = r/2.
Proof.

P (a0 1 al 1 As—1 1 Ag 1
1= \1 o/\1 o 1 0o/\1 0

ap 1\
:PSPST_1<1O o> .

Then by Lemma 11,
maq,— _ 1
( qr—1 Pr 1>=Pr—1 (ao >
Pr—1 qr—1 1 0
N 1
aQ ao
) )
= PsPsT—1
_ (ps ps—1> (ps—l q$—1>
ds Qs—1 Ps—2 (Gs—2
Psqs—1 +ps—1Qs—2>

_ ( ps—l(ps +ps—2)
Ps—19s + Ps—2GQs—1 q$—1(q$ + q$—2)

o

Now remember that v = ¢,_1. O

Theorem 13. For m = 3 (mod4) and
vm = [ag;a,az, .-, 4], then v = as (mod 2)
where s =r/2. So Ay, =1 < a4 is odd.

Proof. By Lemma 12, v = asps—1 (mod 2) and
v = agqs—1 (mod 2). Since ps_; and ¢s—1 are mutu-
ally prime by (5), they cannot be both even. One of
the congruences says v = as (mod 2). |
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