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Abstract:

Let S be a non-empty set of prime numbers; 1 < |S| < co. Let Q7 denote the

abelian extension of the rational field Q whose Galois group over Q is topologically isomorphic to
the direct product of the additive groups of l-adic integers for all [ € S. In this note, we shall give
simple examples of S such that, for some [ € S, the Hilbert I-class field over Q° is a nontrivial
extension of Q%. Our results imply that, if S contains 2, 3, 31, and 73, then there exists an
unramified cyclic extension of degree 2263 = 31 - 73 over Q°.
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We shall suppose that all algebraic extensions
over the rational field Q are contained in the complex
field. For each prime number [, let Z; denote the ring
of l-adic integers. As in the above abstract, let .S be a
non-empty set of prime numbers and let Q° denote
the unique abelian extension over Q such that the
Galois group Gal(Q®/Q) is topologically isomorphic
to the additive group of the direct product [];c g Z:.
Clearly, for any finite algebraic number field k in Q°,
there exists a tower

k=k C---CkypCkpy C---CQ°

of intermediate fields of Q/k with finite degrees
such that

[j k,= QS
n=1

and that, for each positive integer n, some prime
ideal of k,, is fully ramified in k, 1. We thus obtain:

Lemma 1. Let k be a finite algebraic number
field in Q°, and k' a finite unramified Galois ea-
tension over k. Then not only the composite Q k'
is an unramified Galois extension over QS but the
restriction map Gal(Q%k'/Q°) — Gal(k'/k) is an
isomorphism.

Now let p be any prime number in S: p€ S. For
each algebraic number field K and for each prime
number I, let H;(K) denote the Hilbert [-class field
over K, namely, the maximal unramified abelian -
extension over K. Then, in particular,
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H,(Q%) = Hy(k),
k
with k£ ranging over the finite algebraic number fields
in Q“ (cf. [7]). Therefore, both [5] and [6] show us
that

Hp(QS) =Q° when |S|=1, ie., S={p}.

We assume henceforth that S contains a prime
number ¢ other than p:

{p,a} €S, q#vp.

The Z, x Zg-extension over Q is nothing but Q°
for the case S = {p,q}. Let L, denote the unique
subfield of Q° of degree gq. Then L, is contained in
Q(cos(m/q?)), the maximal real subfield of the 2¢2-
th cyclotomic field. Let E, denote the unit group
of Ly, R, 4 the p-adic regulator of L,, and Q, the
field of p-adic numbers. We understand that R, ,
is an element of a fixed algebraic closure Q, of Q,,
considering L, to be a subfield of €}, by means of a
fixed embedding L, — Q. Furthermore, R, , # 0
as [1] implies. Let C; denote the group of circular
units of Ly: namely, in the case ¢ = 2, let C; be the
subgroup of E, generated by —1 and 1 + V2; in the
case ¢ > 2, let C;; be the subgroup of E, generated
by —1 and by all conjugates, over Q, of the norm of

sin(rm/q?) ermi/e® _ g=rmi/q?

sin(m/q?)
for the extension Q(cos(m/q*))/Ly, where r is a
primitive root modulo ¢? (obviously, C, does not de-
pend on the choice of 7). Then, in Q,, the p-adic
regulator for Cy is defined in the usual way. We de-

e7"i/q2 — e—ﬂ'i/q2
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note it by Ry . On the other hand, the group index
of Cy in E, equals the class number of L, (cf. [3]).
Hence

|R;,q|p[Hp(Lq) 1Lyl = |Rpq

P7é07

where | - |, denotes the normalized absolute value on
Qp; Ipl, =p~*. Put

;1 =p' UHp(Ly) : Lq]|Rp,q|;1~

ag(p) = p' "Ry,
Note that the following three conditions are equival-
lent:

(i) pis completely decomposed in L,

(i) L, C Qp.
(iii) p?~! =1 (mod ¢?) or p? =1 (mod 16) accord-

ingasq>2orq=2.

We easily see that, if one of the above conditions is
satisfied, then R, , belongs to p?~'Z, so that

aq(p) = p*

with some integer u > 0.
Let us first consider the case g = 2.
Lemma 2. Assume that

¢=2, p*=1 (mod 16).

Then H,(QS) contains an extension of degree az(p)
over Q.
Proof. We have

QV2) =L, cQ
by the assumption. As readily verified,
az(p) = p (L + V2P~ — 1]

Let F be the unique intermediate field of Q°/Q(1/2)
with degree ax(p) over Q(v/2). Proposition 1 of [2]
then implies that as(p) divides [H,(F') : F] (cf. also
[8, Theorem 1.1]). This fact, together with Lemma 1,
proves the present lemma. L]

Proposition 1. If 2 and 31 belong to S, then
Hs31(Q%) is a nontrivial extension of Q.

Proof. As 312 =1 (mod 16), we let p = 31 in
the assumption of Lemma 2. It is not difficult to see
that

(14++v2)* —1=312-2v/2 (mod 31°)

in the ring of algebraic integers in Q(v/2). Hence we
have a2(31) = 31 and the proposition is proved by
Lemma 2. []
Remark. One knows from [4] that, in the case
q = 2, there exists no example of p # 31 satisfying

p*=1 (mod16), p|az(p), p < 20000.

A note on the Z, X Z4-extension over Q 85

We next consider the case ¢ > 2.
Lemma 3. Assume that

p>2 ¢>2, prt=1 (mod ¢?).

Then H,(Q®) contains an extension of degree a,(p)
over Q.

Proof. In fact, Theorem 1.1 of [8] combined
with [1] implies that there exists an intermediate field
k of Q°/L, with finite degree for which

aq(p) | [Hp(k) : K]. [

Proposition 2. If 3 and 73 belong to S, then
H73(Q?%) is a nontrivial extension of Q7.

Proof. Since 732 = 1 (mod 9), we let (p,q) =
(73,3) in the assumption of Lemma 3. Note that
L3 = Q(cos(w/9)), 2 is a primitive root modulo 9,
and

51.11(277/9) —9cos”
sin(7/9) 9
is a zero of the polynomial 22 — 3z — 1. Let 1, €2,
3 be the conjugates of 2 cos(7/9) over Q so that
(81 — 52)2(52 — 63)2(63 — 51)2 = &1.

Solving the congruence 23 — 3x — 1 = 0 (mod 73%)
and rearranging €1, €9, £3 if necessary, we then obtain

e1 = 157183 (mod 73?),
€9 = 257651 (mod 73?)
in Zr3. These yield
144loge; = 2(e]> — 1) — (e]* — 1)?
=4511-73 (mod 73%),
144logey = 2(eh? — 1) — (e2? — 1)?
=2106-73 (mod 73%),
where log denotes the 73-adic logarithmic function.

On the other hand, £, and &5 represent a basis of the
free abelian group C3/{+1}, and

o(en) =e3 =7 tey !

for the o € Gal(L3/Q) with o(e1) = 2. Therefore,

in view of

4511(—4511 — 2106) — 21062 = 31 - 73 (mod 732)7
we know that
|R75 3l73 = 7373, ie., a3(73)=T3.

Hence the proposition follows from Lemma 3. ]
With the help of Kida’s UBASIC and a personal
computer, we have checked for the case ¢ = 3 that
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there exists no example of p # 73 which satisfies

(mod 9), p]asz(p), p < 10000.

pPP=1
It would be interesting to continue our discussion
under the assumption ¢ > 5, but here we only add
the following

Remark. In the case |S| < oo, H,(Q%) is a
finite extension of Q¥ if and only if Greenberg’s con-
jecture for the Z,-extension over k is true for every
finite algebraic number field k in Q¥.
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