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Abstract:

In this paper we give characterizations of quaternionic space forms in the class of

quaternionic K&hler manifolds in terms of the curvature tensor and the extrinsic shape of geodesics

on geodesic spheres.

Key words:
geodesic spheres.

1. Introduction. The aim of this paper is
to give two characterizations of quaternionic space
forms in the class of quaternionic Kahler manifolds.
A quaternionic Kéahler structure J on a Riemannian
manifold (M, ( , )) of real dimension 4n with Rie-
mannian metric (, ) is a rank 3 vector subbundle of
the bundle of endomorphisms of the tangent bundle
of M with the following properties:

1) For each point © € M there is an open neigh-
borhood G of x in M and sections Jy, Jo, J3 of
the restriction J|g over G such that
i) each J; is an almost Hermitian structure on

G, that is,
J2=—id and (J;X,Y)+(X,J;Y)=0
for all vector fields X and Y on G.
11) JiJi+1 = Ji_;,_g = — i+1Ji (7, mod 3) for i =
1,2,3.

2) The condition that VxJ is a section of J holds
for each vector field X on M and section J of
the bundle J, where V denotes the Riemannian
connection of M.

This triple {J1, J2, J3} is called a canonical local ba-
sis of J. We call a connected quaternionic Kéhler
manifold (M, (, ),J) a quaternionic space form of
quaternionic sectional curvature ¢ (€ R) if the Rie-
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mannian sectional curvature (R(v,Jv)v,Jv) of M
is equal to ¢ for each unit vector v € TM and
each unit J € J. Here we adopt the following
signature for Riemannian curvature tensor of M;
R(X,Y)Z = V[X,y]Z — [VX,Vy}Z. Quaternionic
space forms are the simplest examples in the class
of quaternionic Kéhler manifolds. They are locally
congruent to either a quaternionic projective space
HP"(c) of quaternionic sectional curvature ¢(> 0), a
quaternionic Euclidean space H" or a quaternionic
hyperbolic space HH™(¢) of quaternionic sectional
curvature ¢ (< 0).

In this paper we characterize quaternionic space
forms from two points of view. In section 2, we char-
acterize them by investigating their curvature ten-
sors. In his paper [K] Kosmanek characterized com-
plex space forms in the class of K&hler manifolds
(M, J) by the property that the vector R(u, Ju)u is
proportional to Ju for all non-null tangent vectors
(see also [T]). We here give its quaternionic version.

In section 3, we characterize quaternionic space
forms by observing the extrinsic shape of particu-
lar geodesics on their geodesic spheres of sufficiently
small radius, which is a quaternionic version of our
preceding results in [AM].

2. Curvature tensor of quaternionic
space forms. For a quaternionic space form of
quaternionic sectional curvature c its curvature ten-
sor can be written down as follows(cf. [I]):

(21) R(X.Y)Z = Z[(X,2)Y = (¥.2)X
3
S WY i Z)IX — (X, JZ) Y

— (X, JiY>JiZ)]7
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where {Jy,J2, J3} is a canonical local basis of J.
This guarantees that R(u, Ju)u = c¢Ju, in particu-
lar, guarantees that the vector R(u, Ju)u is propor-
tional to Ju for each unit tangent vector w and unit
J € J. In this section we characterize quaternionic
space forms by this property. We shall start with the
following lemma.

Lemma 1. The curvature tensor R of a
quaternionic Kdhler manifold (M, { , ), J) satisfies

the following equality at an arbitrary point x € M:
R(Ju, Jv) = R(u,v)

for each unit J € J and for each u,v € T, M such
that v is orthogonal to the quaternionic subspace Ju
of Ty M spanned by u.

Proof. For each canonical local Dbasis
{J1,J2, J3} of quaternionic structure on G, there
exist three 1-forms ¢;, g2 and g3 on G satisfying

(2.2) VxJi = giv2(X)Jit1

for each vector field X on G and i = 1,2,3. Using
this equality repeatedly, we can verify the following
identity for arbitrary vector fields X,Y,Z on G and
fori=1,2,3:
(2.3) R(X,Y)(J:Z)=J,R(X,Y)Z

+ i1 (X, Y) i1 Z

+ Nii+2 (X, Y)Ji+2Z (Z mod 3)

—qi+1(X)Jiy2 (i mod 3)

Here the differentiable 2-forms 7; ;41 and 7; ;12 can
be expressed as follows:

Ni,i+1(X,Y) = ¢i41(X) @i (V) — qi(X)gi1(Y)
=X (qi+2(Y)) + Y (gi+2(X)) + qi2([X, Y]),
Ni,i+2(X,Y) = ¢i2(X) @ (V) = ¢i(X)giv2(Y)
+X(qi+1(Y)) — (X)) = qi+1([X, Y]).
Since v is orthogonal to the quaternionic subspace
Ju, for arbitrary tangent vectors w,z € T,M we
can see with the aid of (2.3) that
(R(Jyu, Jiv)w, z) = (R(w, 2)J;u, J;v)
= (J;R(w, z)u, J;v)
= (R(w, z)u,v) = (R(u,v)w, z).

(qurl

Thus we find R(J;u, J;v) = R(u,v) (i =1,2,3). As
we can choose a canonical local basis {Ji, J3, J3}
with J = J; for each unit J € J, we obtain the
conclusion. [

We now show the following characterization of
quaternionic space forms:

Characterizations of quaternionic space forms 169

Let (M,{, ),J) be an n(Z 2)-
dimensional connected quaternionic Kahler mani-
fold. Then M is a quaternionic space form if and
only if at an arbitrary point x € M the wvector
R(u, Ju)u is proportional to Ju for each tangent vec-
torue T,M and J € J.

Proof. We are enough to show the “if” part.
First we check

(2.4)  (R(u, Ju)u, Ju) = (R(u, J'u)u, J'u)

for a tangent vector u € T, M and each J,J € J
with ||J]| = ||J’|| = 1. Indeed, since {(J + J")u, (J —
J)u) = 0, we know by the hypothesis that

0= (R(u, (J + J)u)u, (J — J")u)
= (R(u, Ju)u, Ju) — (R(u, J'u)u, J'u).

Next, we check that
(2.5) (R(u, Ju)u, Ju) =

Theorem 1.

(R(v, Jv)v, Jv)

for each unit J € J and unit tangent vectors u,v €
T, M such that v is orthogonal to the quaternionic
subspace Ju of T, M. Since (J(u+v), J(u—v)) =0,
our hypothesis shows

0=(R(u+v,J(u+v))(u+v),J(u—10))
= (R(u, Ju)u, Ju) — (R(v, Jv)v, Jv)
— (R(u, Jv)u, Jvy + (R(v, Ju)v, Ju).

Here by using Lemma 1 we have

(R(u, Jv)u, Jvy = (R(—Ju,v)u, Jv)
= —(R(u, Jv)Ju,v)
= —(R(—Ju,v)Ju,v)
= (R(v, Ju)v, Ju).

Hence we obtain (2.5). Combining (2.4) and (2.5),
we find at each point x € M the quaternionic sec-
tional curvature does not depend on the choice of a
tangent vector u € T,, M. Therefore the quaternionic
version of Schur’s theorem tells us that our manifold
M is a quaternionic space form (see Theorem 5.3 in
[1). u

Remark. We can relax the condition in Theo-
rem 1 as follows: At an arbitrary point x € M, there
is a normal basis {I3, I, I3} of J such that for each
tangent vector u € T,, M the vector R(u, Iyu)u is pro-
portional to Iyu and the vector R(u, (I + I;)u)u is
orthogonal to (I1 — I;)u, i = 2,3.

3. Geodesic spheres of quaternionic
space forms. In this section we characterize
quaternionic space forms by the extrinsic shape of
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geodesics on geodesic spheres. A smooth curve
v = 7(s) in a Riemannian manifold M parametrized
by its arclength s is called a circle of curvature
k (2 0), if there exists a field of unit vectors Y; along
this curve which satisfies the differential equations:
V¥ = KY,, V4Y, = —k7, where x is a constant
and V5 denotes the covariant differentiation along ~y
with respect to the Riemannian connection V of M.
A circle of null curvature is nothing but a geodesic.

The following lemma is based on the Taylor ex-
pansion for the second fundamental form of geodesic
spheres in an arbitrary Riemannian manifold M,
which is due to Chen and Vanheche [CV].

Lemma 2. For non-zero tangent wectors
v,w € T, M at a point x € M, we choose a unit
tangent vector u € T, M orthogonal to both v and w.
We respectively denote by vp,w, € Toxp (ru)yM the
parallel displacements of v and w along the geodesic
segment exp,, (su), 0 < s < r. Then for sufficiently
small r we have

(3.1)  (Ap v, wy)

_ %WU) ~ LR v)w,u) +0G2),

where Ap, » denotes the shape operator of the geodesic
sphere Sy (r) of radius r centered at x.

Let N be a real hypersurface of a quaternionic
Kéhler manifold M and N a unit local normal vec-
tor field of N in M. We denote by D the maximal
subbundle of TN which is invariant by the quater-
nionic Kéhler structure J: At a point y € N (C M)
the subspace D, is the maximal subspace of T, N
with the property that Jv € D, for each v € D,
and J € J,. Let D+ denote the orthogonal comple-
ment of D in T'N. It is a rank 3 vector subbundle of
TN. By using a canonical local basis {J1, J2, J3}
of J over an open subset G of M containing vy,
we find that D;- is the real linear subspace of T}, N
spanned by JIN, JobN, J3N. On an open set GN N
we set & = —J;N and define ¢; : TN — TN by
¢; =moJ;|pn for i =1,2,3, where 7 : TM |y - TN
is the canonical projection. Then the following iden-
tities hold on GN N for ¢ =1,2,3:

$i&i =0, ¢iiv1 = &iv2, Pibiva = —&it1,
¢ © Giy1lD = Giv2lp = —dit10dip (i mod 3).
From now on, we pay attention on geodesics v on
geodesic spheres with the initial vector ¥(0) € ny-(o).

In a quaternionic Euclidean space H", a
geodesic sphere S;(r) is nothing but a (4n — 1)-
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dimensional standard sphere of curvature 1/r? as a

totally umbilic hypersurface of R4 (= H"). In par-

ticular, every geodesic on S.(r) is a circle of cur-
vature 1/r in H". On the other hand, each non-
flat quaternionic space form M(c) (= HP™(c) or

HH"(c)) does not admit a real hypersurface N all

of whose geodesics are circles in the ambient space

M (c), because there exist no totally umbilic real hy-

persurfaces of M(c). However S, (r) is the simplest

example of real hypersurfaces in M(c), ¢ # 0. For
latter use, we here summarize some of basic proper-
ties on the shape operator A of a geodesic sphere in

a nonflat quaternionic space form.

Lemma 3 (cf. [P]). Every geodesic sphere
Sz(r) in a nonflat quaternionic space form M satis-
fies the following:

(1) The structure tensor ¢; and the shape operator
A of Si(r) are commutative: ¢p;A = A¢p; (i =
1,2,3).

(2) The shape operator A of Sy(r), 0 < r < 7/2
in HP"™(4) satisfies the following at each point
y € Sy(r):

Au=cotr-u for all ue€ D,
and
A& =2cot2r-€ forall €€ DyL,
and the shape operator A of Sy(r), 0 < r < oo

in HH™(—4) satisfies the following at each point
y € Sy (r):

Au = cothr-u for all uwe D,
and
Ag =2coth2r- ¢ for all &€ Dy .

(3) The covariant derivative of the shape operator
A of N = S,(r) satisfies

3
"VxAY =5 {$iX, V)& + (€, V)i XD,
i=1
where the double sign depends on the case
that either the ambient space is HP™(4) or
HH"(-4).
We are now in a position to prove the following.
Theorem 2. Let M be an n (2 2)-dimen-
sional connected quaternionic Kdhler manifold.
Then the following conditions are equivalent.
(1) M is a quaternionic space form.
(2) Consider an arbitrary geodesic sphere Sy (r) of
sufficiently small radius r centered at an arbi-
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trary point x € M. FEuvery geodesic v = ~(s)

with 4(0) = y and %(0) € Dy for an arbitrary

fized point y € S, (1) is a circle of positive cur-

vature in the ambient manifold M.

Proof. (1) = (2). It suffices to check the
case where the ambient manifold M is one of HP"(4)
and HH"(—4). First we consider a geodesic sphere
S, (r) in HP"(4). We denote by ¥V and V the Rie-
mannian connections of N = S,(r) and HP"(4),
respectively. Let v = 7(s) be a geodesic on S.(r)
with the initial condition that v(0) = y € N and
¥(0) € D;. We shall show that A5(s) =2 cot 2r - 4(s)
for every s. It follows from the third assertion of
Lemma 3 that

NV 4 || A%(s) — 2 cot 2r - #(s)||?
= NV, (4%, AY) — dcot 2rV V5 (A%, %)
— 2((VV5 405, A5) — oot 20{(VV5 4)5,4)

3
= 23" {6306 + (6 1067} AT — 2e0t20-7)
i=1

3
=2 Z@Szﬂ) (¢iy, A7)

Since A¢; = ¢; A, we find (@p;, AY) = (Ao, ) =
— (A%, i), which leads us to {(¢;¥, Ay) = 0, and
hence to YV || A5(s) — 2cot 2r - 4(s)[|> = 0. As we
have A¥(0) = 2cot 2r - 4(0) by the initial condition,
we obtain the desirable equality A%(s) = 2cot 2r -
4(s) for every s. By use of the formulae of Gauss
and Weingarten

VxZ =NVxZ+(AX,Z)N and VxN = —AX,
we can see that
Viy=2cot2r - N and ViN = —2cot2r -7,

which means that the extrinsic shape of the geodesic
7y is a circle of curvature 2 cot 2r in HP™(4).

For geodesics on geodesic spheres in HH™(—4)
we can get the similar result by the same argument.

(1) <= (2). Let v = ~v(s) be a geodesic on
Sy (r) with the initial condition that v(0) = y and
4(0) =€ € Dy{ where £ is an arbitrary fixed unit
vector. It follows from the formulae of Gauss and
Weingarten that

(32)  V5(Vs9)
= (V54,07 NN = (Am ¥, ) Am .

On the other hand, since v is a circle in M by the
hypothesis, there exists a positive constant &, satis-
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fying that

(3:3) Vi(Vsd) = —K37.

Comparing the tangential components of (3.2) and
(3.3), we find the following:

<A’"L7T;Y7 ;Y>Am,r;y = li%’)/

As ky # 0, at s = 0 we have for every unit vector
£ eDy

A€ = kel or Ap &= —re€
for some positive k¢. Since we have
kere (§+E) = Amp(§+ ) = mel + Rl
we find a constant ~, satisfying that
Am & =ky¢ forall €Dy

Here, we employ Lemma 2. Let uw € T, M be any
fixed unit vector at an arbitrary point x € M and J
be any element in 7\ {0}. We choose a tangent vec-
tor w € T, M orthogonal to both v and Ju and set
v = Ju. Since u, is a normal vector of the geodesic
sphere S,(r) in M at y = exp,(ru), we know that
vy € D;-, so that A, v, = Kyv,. Hence the expan-
sion (3.1) shows that the curvature tensor R of M
satisfies

(R(u, Ju)w,u) = 0.

Therefore we can see that R(u, Ju)u is proportional

to Ju for every u € T, M and for every J € J at

each point x € M, so that M is a quaternionic space

form by Theorem 1. L]
The following is an improvement of Theorem 2.
Theorem 3. Let M be an n (2 2)-dimen-

sional connected quaternionic Kdhler manifold.

Then the following conditions are equivalent.

(1) M is a quaternionic space form.

(2) Consider an arbitrary geodesic sphere Sy (r) of
sufficiently small radius r centered at an arbi-
trary point x € M. At each point y € Sy(r)
there exists an orthonormal basis {n1,m2,m3} of
D;- such that all geodesics on S, (r) throughy in
the direction n; +n; (4,7 = 1,2,3) are circles of
positive curvature in the ambient manifold M.
Proof. We are enough to show that the condi-

tion (2) implies that M is a quaternionic space form.

Let v; = v:(s) (1 = 1,2, 3) be geodesics on Sy (r) with

7i(0) = y and 4;(0) = n; and 0; = 0;(s) (j = 2,3) be

geodesics on S, (r) through y in the direction 7y +1n;.

Then the same discussion as in the proof of Theorem
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2 yields

<Am,r77ia 771'>Am,7"77i = K‘?T]iv 1=1,2,3
(Am.r(m +m5), (0 + 03)) Am e (m + 1)
:)\5(771 +77])7 .7:2a3
for some positive constants x; and A;. Hence we find
A = i, and A (m+n5) = E£X5(m +1;).
Since (m +n;,m —nj) =0, j = 2,3, we find
(Amr(m +n5),m —n;) =0,
so that
<Am,7“7717 771> = <Am,r77j, 77j>;

because A, is symmetric. Thus there exists a con-
stant r, with

AmrE =Ky forall §e D;.

By the proof of Theorem 2 we get our conclusion. []
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