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Let k1 be a real quadratic field and

η1 = (M +
√

M2 ± 4)/2

be a fixed unit of k1 with a positive integer M . Let
η̄1 be the field conjugate of η1.

Put

gn(M) = ηn
1 + η̄n

1 , hn(M) =
ηn
1 − η̄n

1√
M2 ± 4

.

Then the sequences {gn(M)}n∈N and {hn(M)}n∈N

are the non-degenerate binary recurrence sequences
defined by

gn+2(M) = Mgn+1(M)± gn(M),

hn+2(M) = Mhn+1(M)± hn(M),

with the initial terms g0(M) = 2, g1(M) = M and
h0(M) = 0, h1(M) = 1. If there is no fear of confu-
sion, we simply write hn(M) and gn(M) for hn and
gn, respectively.

In our previous paper [1], we have investigated
Hasse’s unit indices QK of the real bicyclic bi-
quadratic fields K = Q(

√
M2 ± 4,

√
h2

2n+1(M)− 1)
and shown that QK = 1 except for finitely many in-
dices n. In this note, assuming the abc conjecture,
we shall determine the fundamental system of units
of almost all K explicitly. First of all, we shall quote
the following:

The abc conjecture. For any ε > 0, there exists
a constant K0 > 0 (depending on ε) such that if
a, b, c are non-zero relatively prime integers with
a + b + c = 0, then

max{|a|, |b|, |c|} ≤ K0r
1+ε,

where r = rad(abc) =
∏

p|abc p (p: prime integer).
Any positive integer m can be written in the

form m = s(m)q2(m), where s(m) is the square free
part of m. The following proposition is a corollary of
a more general result of P. Ribenboim and G. Walsh
[5, Theorem 2]:

Proposition 1 (Assuming the abc conjecture).

For any ε > 0,

q(hn) ≤ hε
n and q(gn) ≤ gε

n

except for finitely many indices n.
Since hn = s(hn)q2(hn), we have q(hn) ≤ hε

n if and
only if (q(hn))1/ε−2 ≤ s(hn). Hence the abc conjec-
ture and the fact 1/ε−2 →∞ as ε → +0 imply that
for any m > 0,

qm(hn) ≤ s(hn)(1)

except for finitely many indices n. From the case
m = 2 of the above (1), we have hn = s(hn)q2(hn)
≤ s2(hn). The fact hn → ∞ as n → ∞ implies the
following proposition.

Proposition 2 (Assuming the abc conjecture).
For any constant C > 0,

C ≤ s(hn)

except for finitely many indices n.
It is easy to show that for any positive integers

x and y,

s(xy) = s(x)s(y)/(s(x), s(y))2 ≥ s(x)s(y)/(x, y)2,

q(xy) = q(x)q(y)(s(x), s(y)) ≤ q(x)q(y)(x, y).

In Proposition 1 of [1], we have shown h2
2n+1

−1 = h2nh2n+2 with (h2n, h2n+2) = M . Hence, as-
suming the abc conjecture, we have that, for any
m > 0,

s(h2n)s(h2n+2) ≥ M2m+4

except for finitely many indices n. The inequal-
ity (1) implies s(h2n) ≥ q2m(h2n) and s(h2n+2) ≥
q2m(h2n+2) except for finitely many indices n. Hence
we have

s2(h2
2n+1 − 1) = s2(h2nh2n+2)

≥ s2(h2n)s2(h2n+2)/M4

≥ q2m(h2n)q2m(h2n+2)s(h2n)s(h2n+2)/M4

= (Mq(h2n)q(h2n+2))2ms(h2n)s(h2n+2)/M2m+4

≥ q2m(h2nh2n+2) = q2m(h2
2n+1 − 1).
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Thus assuming the abc conjecture, for any m > 0,

s(h2
2n+1 − 1) ≥ qm(h2

2n+1 − 1)

except for finitely many indices n.
Similarly the fact g2

2n+1−M2 = (M2±4)(h2
2n+1−1)

implies that for any m > 0,

s((g2n+1/M)2 − 1) ≥ qm((g2n+1/M)2 − 1)

except for finitely many indices n.
Combining these, we have the following proposition.

Proposition 3 (Assuming the abc conjecture).
For any m ≥ 0,

s(h2
2n+1 − 1) ≥ qm(h2

2n+1 − 1),
s((g2n+1/M)2 − 1) ≥ qm((g2n+1/M)2 − 1),

except for finitely many indices n.
In [1], we have shown that except for finitely many

indices n, the unit η2 = h2n+1 +
√

h2
2n+1 − 1 and

η3 = g2n+1/M +
√

(g2n+1/M)2 − 1 are the odd pow-

ers of the fundamental units of k2 = Q(
√

h2
2n+1 − 1)

and k3 = Q(
√

g2
2n+1 −M2), respectively. Suppose

η2 = ((t +
√

t2 − 4)/2)2l+1

with l ≥ 1. Thus h2
2n+1 − 1 = h2

2l+1(t)(t
2 − 4)/4

implies

q2(h2
2n+1 − 1) ≥ ((h2l+1(t)/2)2 ≥ ((h3(t)/2)2

= ((t2 − 1)/2)2 > t2 − 4 ≥ s(t2 − 4)

≥ s(h2
2n+1 − 1).

Similarly if η3 is not the fundamental unit and an
odd power of the fundamental unit of k3, we have

q2((g2n+1/M)2 − 1) > s((g2n+1/M)2 − 1).

Combining these inequalities and the inequalities of

the case m = 2 of Proposition 3, we have the follow-
ing theorem.

Theorem 1 (Assuming the abc conjecture).

η2 = h2n+1 +
√

h2
2n+1 − 1

(resp. η3 = g2n+1/M +
√

(g2n+1/M)2 − 1)

is the fundamental unit of the real quadratic field k2

(resp. k3), except for finitely many indices n.
As a corollary of this theorem, we can show the

following theorem which is a refinement of Theorem
1 of our previous paper [1].

Theorem 2 (Assuming the abc conjecture).
Let η1 = (M +

√
M2 ± 4)/2 be a fundamental unit

of k1. Then {η1, η2, η3} is a fundamental system of

units of K = Q(
√

M2 ± 4,
√

h2
2n+1 − 1) except for

finitely many indices n.
Remark 1. Numerical investigations which

support the above two theorems will be given in a
forthcoming paper [2].
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