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1. Introduction. In [8], Vessiot investigated
the following system of ordinary differential
equations

(1) ?jx— = Zl anjyt

which he called a “Lie system” after Lie’s work
[3]. Here the a; denote functions in the indepen-
dent variable x and X, are linear differential
operators in the shape

L. 0 .
X’_,Eel'ay, (1 S]Sm)

with the Sj,- being functions of y, which constitute
a Lie algebra over the field of complex numbers.
Consideration of integrals of this turns out to be
the same as of the differential operator

= -a% + j% a,X;, [%, X,] =0,

which must satisfy
m m
(D, X1 = 21 kzl a;cijx X,
j=1 k=
with the c;;;, being the structure constants of the
Lie algebra.

Here we shall examine the relationship be-
tween Lie systems and strongly normal exten-
sions. To do that some preliminaries may be
needed. Let K be an ordinary differential field of
characteristic O with the differentiation D. In
what follows we assume that the field of con-
stants Cg of K is algebraically closed. Differen-
tial field extensions of K would be referred to be
finitely generated as field extensions without
notice. For a differential field extension R/K we
adopt the usual notation Der(R/K) for the Lie
algebra consisting of all derivations of R over K.
Differentiation D of R can be regarded as con-
tained in Der(R/Cy). Hence we can define the
Lie product [D, X1 for X € Der(R/K), which
is seen to lie therein. Let us denote by 2'(R/K)
the dual R-vector space of Der(R/K). It is
generated with the differentials da of a € R.
Here da(X) = Xa for X € Der(R/K). An addi-
tive endomorphism D of 2'(R/K) is defined by

1<Lign),

(Dw)X = D(wX) — wlD, X]

(w € Q'(R/K), X € Der(R/K)).
Clearly D(adb) = D(a)db + adDb holds for
a, b € R. Denote by G(R/K) the group of all
differential automorphisms of R/K. For every
0 € G(R/K) we define two additive automorph-
isms 0, and ¢ of Der(R/K) and 2'(R/K) re-
spectively by

0.X = 0Xo ' (X € Der(R/K)),
o*w = owoy' (w € 2'(R/K)).
Then ¢ (adb) = o(a)dob for a, b € R.

Definition 1. We say that a differential
field extension R/K is a Lie extension if Cp = Cg,
there exists a Cg-Lie subalgebra g of Der(R/K)
of finite dimension over Cg such that [D, g] C
Kg and Rg = Der(R/K). In this case g will be
called its structure.

For instance we shall prove the following
theorem:

Theorem 1. Suppose that K is algebraically
closed. Then every intermediate differential field of
a strongly normal extension of K is a Lie extension
of K.

Recall that a differential field extension N/K
is said to be strongly normal if Cy = Cg and for
every differential isomorphism o

NoN = NCyoy = oNCyoy
holds. G(IN/K) turns out to be an algebraic
group defined over Cy with the dimension equal
to t.d. N/K The structure of Lie extension
N/K ocasionally can be constructed from in-
variant derivations, ones exchangeable with ev-
ery differential automorphisms (cf. [2]).

In fact, strongly normal extensions are seen
to be Lie extensions of the following special type.

Definition 2. A differential field extension
R/K with Cp, = Cy is said to be Lie closed if
Q'(R/K) possesses a basis of differentials
which are annihilated by D. As seen in later, Lie
closed extensions are Lie extensions.

A differential field extension R /K is said to
depend rationally on arbitrary constants if there
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exists a differential field extension E/K such
that E and R are free over K, and ER = ECygy
holds. In this case R is contained in a strongly
normal extension of K provided that Cp = Cy,
and K is algebraically closed (cf. [5]). Such dif-
ferential field extensions strongly relate to gener-
al solutions of algebraic differential equations
with no movable singularities. Theorem 1 in par-
ticular tells us that any intermediate differential
field of a Picard-Vessiot extension, a differential
field extension generated with a fundamental
solution of a system of linear homogeneous dif-
ferential equations, and with no constant that is
not contained in the coefficient field, is a Lie ex-
tension. Details for this are discussed in [3] and
18].

Theorem 2. Let R/ K be a Lie extension and
Py(R) be the maximum among intermediate dif-
ferential fields depending rationally on arbitrary con-
stants. Then, Px(R) is also a Lie extension.

It is worthwhile also to notice the statement
in [7] that any solution of Lie system is one-
valued, though it seems dubious. Although one
might ask if one-valued functions satisfying
algebraic differential equations are always
obtained as solutions of Lie systems, it is seen in-
correct because of the following fact.

Theorem 3. The differential field generated
by Painleve’s first transcendent over C(x), the field
of rational functions in x, Dxr = 1, is not a Lie ex-
tension.

It is very likely that Painlevé’s first equa-
tion (2) admits no solution in a differential field
extension of K which is Lie closed, provided it
admits no solution algebraic over K.

2. Strongly normal extensions. Before pro-
ceeding to the proof of Theorem 1, we note the
following.

Proposition 1. Let R/K be a Lie extension
with structure g§. Suppose that an intermediate dif-
ferential field S is stable under the action of g.
Then S/ K is also a Lie extension with the set g =
gls of derivations X|s(X € g) as Lie algebra
structure.

Proof. 1t is readily seen that Lie algebra g’
has structure constants in Cg. Let X be in g’ and
Y be any extension of X to R. Then we have an
expression Y= 2 a,X;, a, € R. Restricting this
on S gives an expression for X with the use of
restrictions of X; on S. Regarding S as a linear
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subspace of K-linear space R, applying the pro-
jection of R onto S to the expression for X, we
have the required expression for X with coeffi-
cients from S. This proves the proposition.

We fix a strongly normal extension N/K
and denote by # its transcendence degree.
Assume that K is algebraically closed. It is
known that the set g(N/K) of all invariant de-
rivations is an #-dimensional K-linear space
whose basis X, X,, ..., X, also constitutes a
basis for Der(N/K). By definition oX; = X,0
for every 0 € G(N/K) holds. A Cg-linear sub-
space g generated with the X; can be taken as a
Ck-Lie algebra since G(N/K) is defined over
Cx and N is the function field of a principal
homogeneous space for G(N/K) over K. Clearly
[D, g(N/K)] < g(N/K), hence [D, gl < Kg.

Proof of Theorem 1. Let R be an intermedi-
ate differential field and g’ = g |. Since

oXy = Xjoy = Xy
holds for 0 € G(N/R) and y € R, it follows
that X,y € R, namely g’R C R. It is easily veri-
fied that [D, g'] © Kg’. By Proposition 1, the
proof is completed.

Proposition 2. If the g" in the proof just above
satisfies ¥ = dimy Kg' = t.d.R /K, then the algeb-
raic closure R® of R in N is strongly normal over K.

Proof. We may assume that restrictions
X; |, 1 £i<) constitute a basis for Der(R/K).
Inasmuch as each of other X; |R depends linearly
on X, IR, ..., X, |, there are elements a; € K
such that

Y,=X,— 3 a,X, € Der(N/R) (r+1<j<n.
i=1

The Y, are contained in g(N/K) as well, being
linearly independent over N. For 0 € G(N/K)
and y € R

Yoy = oY,y = 0.
Hence oy € R®. This shows that R“/K is
strongly normal.

As the structure of the Lie extension N/K
we can select particular one.

Proposition 3. Suppose that K is algebraically
closed. Then N/ K is Lie closed, to say dually, there
exists a Lie subalgebra g of Der(N/K) such that
Ng = Der(N/K), [D, gl = 0.

Proof. Let the w; be a basis of invariant dif-
ferentials. Then they satisfy

n
Dw,= Z a0, (1<i<n),
j=1
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with a,; € K, because the left hand side is left
invariant under the Galois group. We simply de-
scribe this as Dw = Aw, where w denotes vector
“(w,,..., w,) and A= (a,;;). Proposition asserts
that matrix A can be reduced to O through suit-
able procedure. One of the properties of strongly
normal extensions guarantees the existence of a
differential field extension M /K which is dif-
ferentially isomorphic to N/K and linearly dis-
joint from N over K, and satisfies MN = NC,y
= MCyy. Let ¢;(1 <1< n) be a transcendence
basis for C,y over Cx and dc; be the differen-
tials in 2'(MN/M). Clearly Ddc, = 0. We have
the expression

n
w; = 22 b,dc;
j=1

with  b; € MN, det(b,;) # 0. Substitution of
this into the equation satisfied by the w; leads to

Db, = X a,b,;
h=1

That is to say, B = (b;;) is a fundamental matrix
of the system of linear homogeneous differential
equations, DB = AB. Since entries of B belong
to NC,y, there is a differential specialization
over N
(¢yy..., ¢, BY— (cl,..., ¢, B)
such that ¢} € Cy, det B’ #+ 0. B’ is a matrix
with entries from N satisfying DB’ = AB’. Set 7
= B’ 'w. Then
Dyp=—B'DMB)B'w+ B 'Dw
= — B 'Aw + B 'Aw = 0.

3. Lie closedness. We show that if R/K is
Lie closed with basis w, for 2'(R/K) such that
Dw,; = 0, then

1
da),' = — _2_ Z e”kwj /\ (Uk
ik
(eijx € Cgy €15 = — €4p)-
In fact
1
0 = de, = — E Z D(e,»jk)a)j /\ Cl)k,
ik

therefore e, € Cp = Cy. Here we used the readily
understandable extension of D in R2%*R/K),
which satisfies
D(aNp) =D@ NAB+aADP

for a, 8€ Q' (R/K). The dual basis X, in
Der(R/K) to the w,; constitutes a Lie algebra
with structure constants in Cy, hence turns R/ K
into a Lie extension.

Particular type of strong normality makes
easier construction of such Lie algebras men-
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tioned in Proposition 3. If the Galois group of
N/K is an abelian variety, then the fundamental
matrix utilized in the preceding section must be
rational over K because the Galois group of
K(®) /K, ® being rational over N as proved in
the preceding section, 1is affine, hence
O-dimensional. If N/K is a Picard-Vessiot ex-
tension generated with fundamental matrix @
satisfying linear differential equation D® = A®
over K, in 2'(N/K) we define
w=0"do,

where w indicates a matrix with entries in
Q'(N/K). Clearly Dw = 0.

The same method applies Lie closed exten-
sions in a little more general situation.

Proposition 4. Let R/K be a differential
field extension with Cp = Cy and n denote its
transcendence degree. Suppose that there is an
n-dimensional K-linear subspace V of Der(R/K)
such that RV = Der(R/K) and [D, V1 C V.
Then there exists a differential field extension
R /K being Lie closed which includes R.

Proof. 1f we take a basis X; for V, then

D, X1 =3 a,X, a,c<K.
h=1

Let R® be a Picard-Vessiot extension of R gener-
ated with fundamental matrix @ of
DO =A0, A= (a;,).

Noting Dd® = Ad®, we have

[D, 7'X]1 =0, D(®'d®) = 0.
The first implies the existence of a basis for
R°Q'(R/K), each differential in which vanishes
through D. From this basis together with some of
differentials given from @ 'd® we can construct
a basis for Lgck, each differential in which D
annihilates.

4. Proof of Theorem 2. Any differential
field extension R/K has a unique intermediate
differential field Pg(R) which is the maximum
among intermediate differential fields depending
rationally on arbitrary constants (cf. [5]).

Proposition 5. If there is a finite dimensional
K-linear subspace V of Der(R/K) with [D, V1]
C V, then VPg(R) © Pg(R).

Proof. By [5] there is a differential field ex-
tension E /K such that R, E are free over K and
P.(ER) = EPy(R) = ECzz holds. Every de-
rivation in V can be extended to the derivation in
Der(ER/E), for which we will exploit the same
symbol. Let ¢ be a constant of ER. Let the X, be
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a basis for V. Then we have the linear combina-
tion with coefficients from K C E
[D, X]1=2 a;, X,
h

Applying these onto ¢ we get
DX,c= 2 a;,X,c.
h

This indicates that the set of elements X;c is a
solution of a system of linear differential equa-
tions defined over E. Hence the X;c¢ are contained
in Pg(ER), therefore VP,(ER) < P.(ER),
namely V(EPg(R)) € EPx(R). Applying the
projection of K°E onto K? to this inclusion, we
conclude that VPx(R) C P, (R), noting Px(R) D
K*®, K“ denoting the algebraic closure of K in R.

As a corollary we obtain that if R/K is a
Lie extension then so is Px(R) /K using Proposi-
tion 1, though the same result is drawn from the
fact that P(R) is contained in a strongly normal
extension provided K is algebraically closed.

5. Painlevé’s first transcendent. Here is
given a proof of Theorem 3. Painlevé’s first
transcendent is defined to be a solution of
(2) D’y=6y"+zx, Dx=1
over C(x). We shall prove that if K contains x
with Cy = C and R = K<{y> /K is a Lie exten-
sion then there exists a solution of (2) being
algebraic over K, which implies the theorem
since (2) admits no algebraic function as solution.
By Proposition 4 there exists a fundamental mat-
rix @ of a system of linear differential equations
defined over K such that R(®) /K is Lie closed.
Suppose equation (2) has no solution algebraic
over K(®). Then R and K(®) are freee over K,
and so that Q' (R(®) /K(®)) is generated with
QY(R/K). The Picard-Vessiot group attached to
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R(®)/K(®P) agrees precisely with SL,(C)
according to [6]. Incidentally R(®) /K(®P) is Lie
closed, since so is R(®)/K. This is absurd,
showing that equation (2) admits a solution algeb-
raic over K(®), hence so does over K, on

account of the property of (2) which is proved in
[4].
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