Lie Extensions

By Keiji NISHIOKA

Faculty of Environmental Information, Keio University (Communicated by Kiyosi IT6, M. J. A., May 12, 1997)

1. Introduction. In [8], Vessiot investigated the following system of ordinary differential equations

$$
(1) \qquad \frac{dy_i}{dx} = \sum_{j=1}^m a_j X_j y_i \quad (1 \leq i \leq n),
$$

which he called a "Lie system" after Lie's work [3]. Here the a_i denote functions in the independent variable x and X_i are linear differential operators in the shape

$$
X_j = \sum_{i=1}^n \xi_{ji} \frac{\partial}{\partial y_i} \ (1 \leq j \leq m)
$$

with the ξ_{ji} being functions of y, which constitute a Lie algebra over the field of complex numbers. Consideration of integrals of this turns out to be the same as of the differential operator

$$
D=\frac{\partial}{\partial x}+\sum_{j=1}^m a_jX_j,\quad \left[\frac{\partial}{\partial x},\,X_j\right]=0,
$$

which must satisfy

$$
[D, X_i] = \sum_{j=1}^m \sum_{k=1}^m a_j c_{ijk} X_k,
$$

with the c_{ijk} being the structure constants of the Lie algebra.

Here we shall examine the relationship between Lie systems and strongly normal extensions. To do that some preliminaries may be needed. Let K be an ordinary differential field of characteristic 0 with the differentiation D. In what follows we assume that the field of constants C_K of K is algebraically closed. Differential field extensions of K would be referred to be finitely generated as field extensions without notice. For a differential field extension R/K we adopt the usual notation $Der(R/K)$ for the Lie algebra consisting of all derivations of R over K . Differentiation D of R can be regarded as contained in $Der(R/C_{\kappa})$. Hence we can define the Lie product [D, X] for $X \in Der(R/K)$, which is seen to lie therein. Let us denote by $\Omega^1(R/K)$ the dual R -vector space of $Der(R/K)$. It is generated with the differentials da of $a \in R$. Here $da(X) = Xa$ for $X \in Der(R/K)$. An additive endomorphism D of $\Omega^1(R/K)$ is defined by

$$
(D\omega)X = D(\omega X) - \omega[D, X]
$$

$$
(\omega \in \Omega^1(R/K), X \in Der(R/K)).
$$

Clearly $D(adb) = D(a)db + adDb$ holds for $a, b \in R$. Denote by $G(R/K)$ the group of all differential automorphisms of R/K . For every $\sigma \in G(R/K)$ we define two additive automorphisms σ_* and σ^* of $Der(R/K)$ and $\Omega^1(R/K)$ respectively by

$$
\sigma_* X = \sigma X \sigma^{-1} (X \in Der(R/K)),
$$

\n
$$
\sigma^* \omega = \sigma \omega \sigma_*^{-1} (\omega \in \Omega^1(R/K)).
$$

\nThen
$$
\sigma^*(adb) = \sigma(a) \, do \text{ for } a, b \in R.
$$

Definition 1. We say that ^a differential field extension R/K is a Lie extension if $C_R = C_K$, there exists a C_K -Lie subalgebra g of $Der(R/K)$ of finite dimension over C_K such that $[D, g] \subset$ Kg and $Rg = Der(R/K)$. In this case g will be called its structure.

For instance we shall prove the following theorem:

Theorem 1. Suppose that K is algebraically closed. Then every intermediate differential field of a strongly normal extension of K is a Lie extension of K.

Recall that a differential field extension N/K is said to be strongly normal if $C_N = C_K$ and for every differential isomorphism σ

$$
NoN = NC_{NoN} = oNC_{NoN}
$$

holds. $G(N/K)$ turns out to be an algebraic group defined over C_K with the dimension equal to t.d. N/K . The structure of Lie extension N/K ocasionally can be constructed from invariant derivations, ones exchangeable with every differential automorphisms (cf. $[2]$).

In fact, strongly normal extensions are seen to be Lie extensions of the following special type.

Definition 2. A differential field extension R/K with $C_R = C_K$ is said to be Lie closed if $\Omega^1(R/K)$ possesses a basis of differentials which are annihilated by D . As seen in later, Lie closed extensions are Lie extensions.

A differential field extension R/K is said to depend rationally on arbitrary constants if there exists a differential field extension E/K such subspace of K-linear space R, applying the prothat E and R are free over K, and $ER = EC_{ER}$ jection of R onto S to the expression for X, we holds. In this case R is contained in a strongly have the required expression for X with coeffinormal extension of K provided that $C_R = C_K$, cients from S. This proves the proposition. and K is algebraically closed (cf. [5]). Such dif- We fix a strongly normal extension N/K ferential field extensions strongly relate to gener- and denote by n its transcendence degree. al solutions of algebraic differential equations Assume that K is algebraically closed. It is with no movable singularities. Theorem 1 in par- known that the set $g(N/K)$ of all invariant deticular tells us that any intermediate differential rivations is an n -dimensional K-linear space field of a Picard-Vessiot extension, a differential whose basis X_1, X_2, \ldots, X_n also constitutes a field extension generated with a fundamental basis for $Der(N/K)$. By definition $\sigma X_i = X_i \sigma$ field extension generated with a fundamental solution of a system of linear homogeneous dif- for every $\sigma \in G(N/K)$ holds. A C_K -linear subferential equations, and with no constant that is space g generated with the X_i can be taken as a not contained in the coefficient field, is a Lie ex-
 C_{κ} -Lie algebra since $G(N/K)$ is defined over tension. Details for this are discussed in [3] and C_K and N is the function field of a principal [8]. $[8]$.

 $P_{\kappa}(R)$ be the maximum among intermediate dif-
Proof of Theorem 1. Let R be an intermedi*ferential fields depending rationally on arbitrary con*- ate differential field and $g' = g\vert_{R}$. Since stants. Then, $P_K(R)$ is also a Lie extension.

in [7] that any solution of Lie system is one- that $X_i y \in R$, namely $q'R \subset R$. It is easily verivalued, though it seems dubious. Although one fied that $[D, g'] \subset Kg'$. By Proposition 1, the might ask if one-valued functions satisfying proof is completed. algebraic differential equations are always **Proposition 2.** If the g' in the proof just above obtained as solutions of Lie systems, it is seen in-
satisfies $r = \dim_K K q' = t.d.R/K$, then the algebcorrect because of the following fact.

by Painlevé's first transcendent over $C(x)$, the field $X_i|_R$ $(1 \leq i \leq r)$ constitute a basis for $Der(R/K)$.
of rational functions in x, $Dx = 1$, is not a Lie ex- Inasmuch as each of other $X_i|_R$ depends linearly

It is very likely that Painlevé's first equation (2) admits no solution in a differential field $Y_j = X_j - \sum_{i=1}^r a_{ji} X_i \in Der(N/R)$ $(r+1 \le j \le n)$.
extension of K which is Lie closed, provided it

ceeding to the proof of Theorem 1, we note the and $y \in R$ following. $Y_j \sigma y = \sigma Y_j y = 0$.

with structure g. Suppose that an intermediate dif-
strongly normal. ferential field S is stable under the action of q. As the structure of the Lie extension N/K Then S/K is also a Lie extension with the set $g' =$ we can select particular one. $|g|_{S}$ of derivations $X|_{S}$ ($X \in g$) as Lie algebra **Proposition 3.** Suppose that K is algebraically structure. $\ddot{\text{c}}$ closed. Then N/K is Lie closed, to say dually, there

has structure constants in C_{κ} . Let X be in \mathfrak{g}' and $N\mathfrak{g} = Der(N/K)$, $[D, \mathfrak{g}] = 0$. Y be any extension of X to R. Then we have an *Proof.* Let the ω_i be a basis of invariant dif-
expression $Y = \sum a_i X_i$, $a_i \in R$. Restricting this ferentials. Then they satisfy expression $Y = \sum a_i X_i$, $a_i \in R$. Restricting this on S gives an expression for X with the use of restrictions of X_i on S. Regarding S as a linear

 C_{κ} -Lie algebra since $G(N/K)$ is defined over **Theorem 2.** Let R/K be a Lie extension and $[D, g(N/K)] \subseteq g(N/K)$, hence $[D, g] \subseteq Kg$.

$$
\sigma X_i y = X_i \sigma y = X_i y
$$

It is worthwhile also to notice the statement holds for $\sigma \in G(N/R)$ and $y \in R$, it follows

 \int^a of $\mathbb R$ in N is strongly normal over K .

Theorem 3. The differential field generated Proof. We may assume that restrictions Inasmuch as each of other $X_j|_R$ depends linearly tension.
It is very likely that Painlevé's first equa-
such that
 $X_1|_R, \ldots, X_r|_R$ there are elements $a_{ji} \in K$
It is very likely that Painlevé's first equa-
such that

$$
Y_j = X_j - \sum_{i=1}^r a_{ji} X_i \in Der(N/R) \quad (r+1 \leq j \leq n).
$$

admits no solution algebraic over K.
 2. Strongly normal extensions. Before pro-

linearly independent over N. For $\sigma \in G(N/K)$
 2. Strongly normal extensions. Before pro-

linearly independent over N. For $\sigma \in G(N/K)$ linearly independent over N. For $\sigma \in G(N/K)$

$$
Y_j \sigma y = \sigma Y_j y = 0.
$$

Proposition 1. Let R/K be a Lie extension Hence $\sigma y \in R^a$. This shows that R^a/K is

Proof. It is readily seen that Lie algebra g' exists a Lie subalgebra g of $Der(N/K)$ such that

$$
D\omega_i=\sum_{j=1}^n a_{ij}\omega_j \quad (1\leq i\leq n),
$$

with $a_{ii} \in K$, because the left hand side is left invariant under the Galois group. We simply describe this as $D\omega = A\omega$, where ω denotes vector $t'(\omega_1,\ldots, \omega_n)$ and $A = (a_{ij})$. Proposition asserts that matrix \vec{A} can be reduced to 0 through suitable procedure. One of the properties of strongly normal extensions guarantees the existence of a differential field extension M/K which is differentially isomorphic to N/K and linearly disjoint from N over K, and satisfies $MN = NC_{MN}$ $M = MC_{MN}$. Let $c_i (1 \leq i \leq n)$ be a transcendence basis for C_{MN} over C_K and dc_i be the differentials in $\Omega^1(MN/M)$. Clearly $Ddc_i = 0$. We have the expression

$$
\omega_i = \sum_{j=1}^n b_{ij} dc_j
$$

with $b_{ij} \in MN$, $\det(b_{ij}) \neq 0$. Substitution of this into the equation satisfied by the ω_i leads to

$$
Db_{ij}=\sum_{h=1}^n a_{ih}b_{hj}.
$$

That is to say, $B = (b_{ij})$ is a fundamental matrix of the system of linear homogeneous differential equations, $DB = AB$. Since entries of B belong to NC_{MN} , there is a differential specialization over N

(c₁,..., c_n, B) \rightarrow (c'₁,..., c'_n, B')
such that $c'_i \in C_R$, det $B' \neq 0$. B' is a matrix
with optime from M ostinfring $DP' = AP'$ Set m with entries from N satisfying $DB' = AB'$. Set η $= B'^{-1}\omega$. Then

$$
D\eta = -B'^{-1}D(B')B'^{-1}\omega + B'^{-1}D\omega
$$

= -B'^{-1}A\omega + B'^{-1}A\omega = 0.

3. Lie closedness. We show that if R/K is Lie closed with basis ω_i for $\Omega^1(R/K)$ such that $D\omega_i = 0$, then

$$
d\omega_i = -\frac{1}{2} \sum_{j,k} e_{ijk} \omega_j \wedge \omega_k
$$

\n
$$
(e_{ijk} \in C_K, e_{ijk} = -e_{ikj}).
$$

In fact

$$
0= D d\omega_i = -\frac{1}{2} \sum_{j,k} D(e_{ijk}) \omega_j \wedge \omega_k,
$$

therefore $e_{ijk} \in C_R = C_K$. Here we used the readily understandable extension of D in $\Omega^2(R/K)$, which satisfies

 $D(\alpha \wedge \beta) = D(\alpha) \wedge \beta + \alpha \wedge D(\beta)$

for $\alpha, \beta \in \Omega^1(R/K)$. The dual basis X_i in $Der(R/K)$ to the ω_i constitutes a Lie algebra with structure constants in C_K , hence turns R/K into a Lie extension.

Particular type of strong normality makes easier construction of such Lie algebras mentioned in Proposition 3. If the Galois group of N/K is an abelian variety, then the fundamental matrix utilized in the preceding section must be rational over K because the Galois group of $K(\Phi)/K$, Φ being rational over N as proved in the preceding section, is affine, hence 0-dimensional. If N/K is a Picard-Vessiot extension generated with fundamental matrix Φ satisfying linear differential equation $D\Phi = A\Phi$ over K, in $\Omega^1(N/K)$ we define

$$
\omega = \varPhi^{-1} d\varPhi,
$$

where ω indicates a matrix with entries in $\Omega^1(N/K)$. Clearly $D\omega=0$.

The same method applies Lie closed extensions in a little more general situation.

Proposition 4. Let R/K be a differential field extension with $C_R = C_K$ and n denote its transcendence degree. Suppose that there is an n -dimensional K-linear subspace V of $Der(R/K)$ such that $RV = Der(R/K)$ and $[D, V] \subset V$. Then there exists a differential field extension R^{c}/K being Lie closed which includes R.

Proof. If we take a basis X_i for V, then

$$
[D, X_i] = \sum_{h=1}^n a_{ih} X_h, \quad a_{ih} \in K.
$$

Let R^e be a Picard-Vessiot extension of R generated with fundamental matrix Φ of

$$
D\Phi = A\Phi, \quad A = (a_{ih}).
$$

Noting $D d\Phi = Ad\Phi$, we have

 $[D, \Phi^{-1}X] = 0, \quad D(\Phi^{-1}d\Phi) = 0.$

The first implies the existence of a basis for $R^cQ^1(R/K)$, each differential in which vanishes through D . From this basis together with some of differentials given from $\Phi^{-1}d\Phi$ we can construct a basis for $\Omega_{R^c/K}$, each differential in which D annihilates.

4. Proof of Theorem 2. Any differential field extension R/K has a unique intermediate differential field $P_K(R)$ which is the maximum among intermediate differential fields depending rationally on arbitrary constants (cf. [5]).

Proposition 5. If there is a finite dimensional K-linear subspace V of $Der(R/K)$ with $[D, V]$ $\subset V$, then $VP_K(R) \subset P_K(R)$.

Proof. By [5] there is a differential field extension E/K such that R, E are free over K and $P_{E}(ER) = EP_{K}(R) = EC_{ER}$ holds. Every derivation in V can be extended to the derivation in $Der(ER/E)$, for which we will exploit the same symbol. Let c be a constant of ER. Let the X_i be

a basis for V. Then we have the linear combination with coefficients from $K \subseteq E$

$$
[D, X_i] = \sum_h a_{ih} X_h.
$$

Applying these onto c we get $DX_i c = \sum_{h} a_{ih} X_h c$.

This indicates that the set of elements X,c is a solution of a system of linear differential equations defined over E . Hence the X,c are contained in $P_E (ER)$, therefore $VP_E (ER) \subset P_E (ER)$, namely $V(EP_{K}(R)) \subset EP_{K}(R)$. Applying the projection of $K^a E$ onto K^a to this inclusion, we conclude that $VP_K(R) \subset P_K(R)$, noting $P_K(R) \supset$ K^a , K^a denoting the algebraic closure of \overrightarrow{K} in \overrightarrow{R} .

As a corollary we obtain that if R/K is a Lie extension then so is $P_K(R)/K$ using Proposition 1, though the same result is drawn from the fact that $P_{\kappa}(R)$ is contained in a strongly normal extension provided K is algebraically closed.

5. Painlevé's first transcendent. Here is given a proof of Theorem 3. Painlevé's first transcendent is defined to be a solution of

(2) $D^2y = 6y^2 + x$, $Dx = 1$

over $C(x)$. We shall prove that if K contains x with $C_K = C$ and $R = K \langle y \rangle / K$ is a Lie extension then there exists a solution of (2) being algebraic over K , which implies the theorem since (2) admits no algebraic function as solution. By Proposition 4 there exists a fundamental matrix Φ of a system of linear differential equations defined over K such that $R(\Phi)/K$ is Lie closed. Suppose equation (2) has no solution algebraic over $K(\Phi)$. Then R and $K(\Phi)$ are freee over K, and so that $\Omega^1(R(\Phi)/K(\Phi))$ is generated with $\Omega^1(R/K)$. The Picard-Vessiot group attached to $R(\Phi)/K(\Phi)$ agrees precisely with $SL_2(\mathbb{C})$ according to [6]. Incidentally $R(\Phi)/K(\Phi)$ is Lie closed, since so is $R(\Phi)/K$. This is absurd, showing that equation (2) admits a solution algebraic over $K(\Phi)$, hence so does over K, on account of the property of (2) which is proved in $[4]$.

References

- [1] E. R. Kolchin: Differential algebra and algebraic groups. Academic Press, New York-London (1974).
- [2] L. Konigsberger: Über die einer beliebigen Differentialgleichung erster Ordnung angehörigen selbständigen Transcendenten. Acta Math., 3, $1-48$ (1883).
- [3] S. Lie: Allgemeine Untersuchungen über Differentalgleichungen, die eine continuirliche, endliche Gruppe gestatten. Math. Ann., 25, 71-151 $(1885).$
- [4] K. Nishioka: A note on the transcendency of Painlevé's first transcendent. Nagoya Math. J., 109, 63-67 (1988).
- [5] K. Nishioka: Differential algebraic function fields depending rationally on arbitrary constants. Nagoya Math. J., 113, 173-179 (1989).
- [6] K. Nishioka: Linear differential equation attached to Painlevé's first transcendent. Funkcial. Ekvac., 38, 277-282 (1995).
- [7] E. Picard: Sur une classe d'équations différentielles dont l'intégrale générale est uniforme. Œvres de E. Picard I, C.N.R.S., Paris, pp. 157-158 (1978).
- [8] E. Vessiot: Sur les systèmes d'élguations différentielles du premier ordre qui ont des systèmes fondamentaux d'intégrales. Ann. Fac. Sci. Univ. Toulouse, 8, 1-33 (1894).