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1. Introduction. In [8], Vessiot investigated
the following system of ordinary differential
equations

dy
] aXy (1N i<_n),(1) dx j=l

which he called a "Lie system" after Lie’s work
[3]. Here the aj denote functions in the indepen-
dent variable x and X are linear differential
operators in the shape

x, 22 (1 <_jN m)
i=l

with the being functions of y, which constitute
a Lie algebra over the field of complex numbers.
Consideration of integrals of this turns out to be
the same as of the differential operator

D -0- + EaX, =0,

which must satisfy

[D, X]- E E ac X,
=1 k=l

with the cijk being the structure constants of the
Lie algebra.

Here we shall examine the relationship be-
tween Lie systems and strongly normal exten-
sions. To do that some preliminaries may be
needed. Let K be an ordinary differential field of
characteristic 0 with the differentiation D. In
what follows we assume that the field of con-
stants CK of K is algebraically closed. Differen-
tial field extensions of K would be referred to be
finitely generated as field extensions without
notice. For a differential field extension R/K we
adopt the usual notation Der(R/K) for the Lie
algebra consisting of all derivations of R over K.
Differentiation D of R can be regarded as con-
tained in Der(R/CK). Hence we can define the
Lie product [D X] for X Der(R /K), which
is seen to lie therein. Let us denote by DI(R/K)
the dual R-vector space of Der(R/K). It is
generated with the differentials da of a R.
Here da(X) Xa for X Der(R /K). An addi-
tive endomorphism D of D(R/K) is defined by

(Do))X D(wX) w [D, X]
(w 2I(R/K), X Der(R/K)).

Clearly D(adb) D(a)db + adDb holds for
a, b R. Denote by G(R/K) the group of all
differential automorphisms of R/K. For every
a G(R/K) we define two additive automorph-
isms a. and a* of Der(R/K) and Y2(R/K) re-

spectively by

a.X aXa- (X Der(R/K)),
--1

a oo= awa, (w 9 (R/K)).
Then a*(adb) a(a)dab for a, b R.

Definition 1. We say that a differential
field extension R/K is a Lie extension if CR CK,
there exists a Cr-Lie subalgebra g of Der(R/K)
of finite dimension over Ctr such that [D, g] c
Kg and Rg Der(R/K). In this case g will be
called its structure.

For instance we shall prove the following

theorem:
Theorem 1. Suppose that K is algebraically

closed. Then every intermediate differential field of
a strongly normal extension of K is a Lie extension

of K.
Recall that a differential field extension N/K

is said to be strongly normal if CN Ctr and for
every differential isomorphism a

NaN NCo aNC
holds. G(N/K) turns out to be an algebraic

group defined over C/ with the dimension equal
to t.d. N/If. The structure of Lie extension
N/K ocasionally can be constructed from in-

variant derivations, ones exchangeable with ev-

ery differential automorphisms (el. [21).
In fact, strongly normal extensions are seen

to be Lie extensions of the following special type.
Definition 2. A differential field extension

R/K with CR CK is said to be Lie closed if
t9(R/K) possesses a basis of differentials
which are annihilated by D. As seen in later, Lie
closed extensions are Lie extensions.

A differential field extension R/K is said to
depend rationally on arbitrary constants if there



No. 5] Lie Extensions 83

exists a differential field extension E/K such subspace of K-linear space R, applying the pro-
that E and R are free over K, and ER-" ECeR jection of R onto S to the expression for X, we
holds. In this case R is contained in a strongly have the required expression for X with coeffi-
normal extension of K provided that CR CI, cients from S. This proves the proposition.
and K is algebraically closed (cf. [5]). Such dif- We fix a strongly normal extension N/K
ferential field extensions strongly relate to gener- and denote by n its transcendence degree.
al solutions of algebraic differential equations Assume that K is algebraically closed. It is
with no movable singularities. Theorem 1 in par- known that the set g(N/K) of all invariant de-
ticular tells us that any intermediate differential rivations is an n-dimensional K-linear space
field of a Picard-Vessiot extension, a differential whose basis X1, X2,..., X also constitutes a
field extension generated with a fundamental basis for Der(N/K). By definition
solution of a system of linear homogeneous dif- for every a G(N/K) holds. A C/-linear sub-
ferential equations, and with no constant that is space 9 generated with the X can be taken as a
not contained in the coefficient field, is a Lie ex- CK-Lie algebra since G(N/K) is defined over
tension. Details for this are discussed in [3] and CK and N is the function field of a principal

[8]. homogeneous space for G(N/K) over K. Clearly
Theorem 2. Let R/K be a Lie extension and [D, g(N/K)] c g(N/K), hence [D, 9] C Kg.

P(R) be the maximum among intermediate dif- Proof of Theorem 1. Let R be an intermedi-

ferential fields depending rationally on arbitrary con- ate differential field and 9’ 9 IR. Since

stants. Then, Pz(R) is also a Lie extension, aXiy Xay Xiy
It is worthwhile also to notice the statement holds for a G(N/R) and y R, it follows

in [7] that any solution of Lie system is one- that Xy R, namely 9’R R. It is easily veri-
valued, though it seems dubious. Although one fled that [D, fl’] c Kg’. By Proposition 1, the
might ask if one-valued functions satisfying proof is completed.
algebraic differential equations are always Proposition 2. If the 9" in the proof just above
obtained as solutions of Lie systems, it is seen in- satisfies r dimg K]’ t.d.R/K, then the algeb-
correct because of the following fact. raic closure Ra

of R in N is strongly normal over K.
Theorem 3. The differential field generated Proof We may assume that restrictions

by Painlevb’s first transcendent over C(x), the field X IR (1 <-- i <-- r) constitute a basis for Der(R/K).
of rational functions in x, Dx-- 1, is not a Lie ex- Inasmuch as each of other Xj IR depends linearly
tension, on XIIR,..., XrlR there are elements a K

It is very likely that Painleve’s first equa- such that
tion (2) admits no solution in a differential field aX Der(N/R) (r+ 1 <-j <-n).
extension of K which is Lie closed, provided it Y- Xj-

admits no solution algebraic over K. The Y are contained in g(N/K) as well, being
2. Strongly normal extensions. Before pro- linearly independent over N. For a G(N/K)

ceeding to the proof of Theorem 1, we note the and y R
following. Yay-- aYy-- O.

Proposition 1. Let R /K be a Lie extension Hence ay Ra. This shows that Ra /K is
with structure 9. Suppose that an intermediate dif- strongly normal.

ferential field S is stable under the action of 9. As the structure of the Lie extension N/K

Then S/K is also a Lie extension with the set 9" we can select particular one.

9 Is of derivations X Is (X 9) as Lie algebra Proposition 3. Suppose that K is algebraically
structure, closed. Then N/K is Lie closed, to say dually, there

Proof. It is readily seen that Lie algebra 9’ exists a Lie subalgebra of Der(N/K) such that
has structure constants in Cz. Let X be in 9’ and N9 Der(N/K), [D, 9] O.
Y be any extension of X to R. Then we have an Proof. Let the o be a basis of invariant dif-
expression Y-- ] aX, a R. Restricting this ferentials. Then they satisfy
on S gives an expression for X with the use of

Do) 2 aio) (1 <- i-< n),
restrictions of X on S. Regarding S as a linear =
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with ai K, because the left hand side is left
invariant under the Galois group. We simply de-
scribe this as Do) Ao), where co denotes vector
t(o)l,..., o),,) and A (ai). Proposition asserts
that matrix A can be reduced to 0 through suit-
able procedure. One of the properties of strongly
normal extensions guarantees the existence of a
differential field extension M/K which is dif-
ferentially isomorphic to N/If and linearly dis-
joint from N over K, and satisfies MN NCIr

MCur. Let c(1 --< N n) be a transcendence
basis for Cu over C and dc be the differen-
tials in DI(MN/. Clearly Ddc 0. We have
the expression

bdc
with b MN, det(b) 0. Substitution of
this into the equation satisfied by the leads to

Db aibh.
h=l

That is to say, B (bi) is a fundamental matrix
of the system of linear homogeneous differential
equations, DB AB. Since entries of B belong
to NC, there is a differential specialization
over N

(C1,... Cn, B) (c[, cn,
such that c C, detB’ 0. B’ is a matrix
with entries from N satisfying DB" AB’. Set

B’-w. Then

D B’-D(B’)B’-w + B’-IDw
B’-Aw + B’-IAw O.

3. Lie elosedness. We show that if R/K is
Lie closed with basis w for D(R/K) such that

Dw 0, then
1

(e C, e e).
In fact

1
0 Ddo) 2 D(ek)o) A

therefore e CR CK. Here we used the readily
understandable extension of D in Y22(R/K),
which satisfies

D(a A fl) D(a) A 4- a A D(/)
for a, fl Y21(R/K). The dual basis X in
Der(R/K) to the o) constitutes a Lie algebra
with structure constants in CK, hence turns R/K
into a Lie extension.

Particular type of strong normality makes
easier construction of such Lie algebras men-

tioned in Proposition 3. If the Galois group of
N/If is an abelian variety, then the fundamental
matrix utilized in the preceding section must be
rational over K because the Galois group of
K(cI))/K, (I) being rational over N as proved in
the preceding section, is affine, hence
0-dimensional. If N/K is a Picard-Vessiot ex-
tension generated with fundamental matrix q
satisfying linear differential equation Dq)= A
over K, in X2(N/K) we define

o) q-d,
where o) indicates a matrix with entries in
[2(N/K). Clearly Do)-- 0.

The same method applies Lie closed exten-
sions in a little more general situation.

Proposition 4. Let R/K be a differential
field extension with CR C and n denote its

transcendence degree. Suppose that there is an

n-dimensional K-linear subspace V of Der(R/K)
such that RV Der(R/K) and [D, V] c V.
Then there exists a differential field extension

Rc/K being Lie closed which includes R.
Proof. If we take a basis X for V, then

[D,X] aX, a K.
h=l

Let R be a Picard-Vessiot extension of R gener-
ated with fundamental matrix q of

DO=Aq, A= (a,).
Noting Ddq AdO, we have

[D, q-X] O, D(q-idq) O.
The first implies the existence of a basis for
RDI(R/K), each differential in which vanishes
through D. From this basis together with some of
differentials given from q)-td we can construct
a basis for -QR/tr, each differential in which D
annihilates.

4. Proof of Theorem 2. Any differential
field extension R/If has a unique intermediate
differential field PIe(R)which is the maximum
among intermediate differential fields depending
rationally on arbitrary constants (cf. [5]).

Proposition 5. If there is a finite dimensional

K-linear subspace V of Der(R /K) with [D, V]
V, then VPI((R) PK(R).
Proof. By [5] there is a differential field ex-

tension E/K such that R, E are free over K and

Pz(ER) EP(R) ECz holds. Every de-
rivation in V can be extended to the derivation in
Der(ER/E), for which we will exploit the same
symbol. Let c be a constant of ER. Let the Xi be
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a basis for V. Then we have the linear combina-
tion with coefficients from K c E

[D, X] E a,X.
h

Applying these onto c we get

DXic _, aihXhc.
h

This indicates that the set of elements Xc is a
solution of a system of linear differential equa-
tions defined over E. Hence the Xc are contained
in Pz (ER) therefore VP. (ER) c PE (ER),
namely V(EPI(R) EPK(R). Applying the
projection of KaE onto Ka

to this inclusion, we
conclude that VPK(R) P(R), noting P,(R)
K, Ka

denoting the algebraic closure of K in R.
As a corollary we obtain that if R/K is a

Lie extension then so is Pc(R)/K using Proposi-
tion 1, though the same result is drawn from the
fact that PI(R) is contained in a strongly normal
extension provided K is algebraically closed.

5. Painlev’s first transcendent. Here is
given a proof of Theorem 3. Painlev6’s first
transcendent is defined to be a solution of
(2) D2y 6y + x, Dx 1
over C(x). We shall prove that if K contains x
with CK= C and R K@)/K is a Lie exten-
sion then there exists a solution of (2) being
algebraic over K, which implies the theorem
since (2) admits no algebraic function as solution.
By Proposition 4 there exists a fundamental mat-
rix q} of a system of linear differential equations
defined over K such that R(q)/K is Lie closed.
Suppose equation (2) has no solution algebraic
over K(q). Then R and K(O) are freee over K,
and so that QI(R(q)/K()) is generated with
QI(R/K). The Picard-Vessiot group attached to

R(q)/K((I)) agrees precisely with SL2(C)
according to [61. Incidentally R(q)/K(O) is Lie
closed, since so is R(O)/K. This is absurd,
showing that equation (2) admits a solution algeb-
raic over K(O), hence so does over K, on
account of the property of (2) which is proved in

[41.
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