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Remarks on the Periodic Solution of the Heat Convection Equation
in a Perturbed Annulus Domain

By Kazuo (EDA

Faculty of Science, Japan Women’s University

(Communicated by Kiyosi IT6, M. J. A., Feb. 12, 1997)

1. Introduction. We consider the heat con-
vection equation in a time-dependent bounded
domain Q(t) of /2 which varies periodically
with period Tp.

U .3f_ (U" 7)U (7p) /)

(1)
{1 c(0- To)}g + vAu in ,
div u 0 in ,

0 + (u" V)0 teA0 in ,
(2) u 10a(t)= fl(x, t), 0 [to To > O, 0 It(t)= 0

for any t (0, oo),
(3) u(., t + T) u(., t), 0(., t + T) O(t),

in f2 (0),
where Q Uo<t<ooQ(t) (t} and Q(t) (the
boundary of Q(t)) consists of two smooth compo-
nents, i.e. &Q(t) ---Fo U F(t), and /’o is the in-
ner boundary which bounds a compact set K,
while the outer boundary F(t)is a smooth one
with respect to both x and t. We assume that the
set K includes the origine O and .Q(t) is included
in a ball Ba B(O, d/2). We put B Ba\K.
Moreover, u u(x, t) is the velocity vector,
p =p(x, t) is the pressure and 0-- O(x, t) is
the temperature; v, to, c, p and g- g(x) are the
kinematic viscosity, the thermal conductivity, the
coefficient of volume expansion, the density at
0-- TO and the gravitational vector, respectively.
(Hereafter, we denote the heat convection equa-
tion by HC equation).

.As for the 3-dimensional problems, we
proved the existence, uniqueness and the stabil-
ity of the periodic strong solutions in [9] and [10]
when the data are small, while Morimoto [8]
obtained the periodic weak solutions. Recently,
Inoue-tani [6] studied and got the periodic
strong solution under their small type conditions
when the space dimention n 2 or 3 (in time-
dependent domains). On the other hand for the
2-dimensional cases, we obtained, in [14], a suffi-
cient condition for the existence of the periodic
strong solution in the form of a certain relation
between given data including a time period, but

not including the magnitude of b which is an ex-
tension of the boundary function fl(x, t). The
purpose of the present paper is to improve the
result of our previous one [14] and to remove the
small type condition on the boundary data of the
fluid velocity. (We announced the results of this
paper in [15]).

2. Preliminaries. First, we make assump-
tions:

(A1) For each fixed t >_ O, F(t) and Fo are both
simple closed curves. Moreover, they are smooth
(of class C) in x, t.
(A2) There exists /2(ro, r) {x R2",0 < ro

[xl r} such that 2(ro, r) 2(t) for all
t --> 0. Moreover, there is 6 > 0 such that

dist(Fo, {I x to}) --> 6 and
dist(F(t), (I x r}) >_ 6 for all t >-- 0.

(A3) (t + T) 2(t), F(t + T) F(t) and
fl(’, t + Tp) fl(-, t) for all t --> 0.
(A4) g(x) is a bounded continuous vector func-
tion in/t2\ K.
(A5) There exists a function b- b(x, t) of the
form b-- rot c(x, t) where c (x, t) C on
B [0, oo), periodic in t with period T and

Remark 1. By (A5), retaking c(x, t), if
necessary, it holds

fl’ndS fr ’ndS O, where B
(t)

stands for B \ K.
Here, we state two lemmas.
Lemma 2.1 (cf. Temam [19]). For an arbit-

rary > O, there exists b, b, (x, t) such that

b, H(B), div b, O, b,(O2(t)) ,
I((u" i7)b, u) l_ s [IVu for u H(O(t)).
Lemma 2.2 ([121). For each O, there ex-

ists O O(x, t) such that O C(B) C
H (B), O (V0) To, O, (V(t)) 0 and (u. v) 0,
<-- s Vu for u Ho (Q(t)).

Remark 2. H(B) and Ho(B) stand for
Sobolev spaces. Ha(B) and HI(B) mean sole-
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noidal Sobolev spaces.
Remark 3. Thanks to the assumption (A3),

bs and 0s can be taken as periodic functions with
period Tp.

Proof of Lemma 2.2. To show this lemma,
we introduce 0o(X)"

To, x Bo\K,

((4) o(X)-- T log log xtg(ro,r),

O, x B\B,
where B, {x R2" [x[ < r} (i- 0 1)

On the other hand, according to Lemma 1.9
of Chapter of Temam [19], for an arbitrary
s > 0, there is s(x, t) C2(D(t)) such
that 1 in some neighbourhoods of Fo and
F(t) ;a- 0 if p(x) 2(e) and D%(x) e
/p(2) if p(x) 26(e) (k- 1,2), where p(x, t)

min{dist(x, Fo), dist(x, F(t))} and 6(e)
exp(--l/t). Now, we put 0 = a0o. Then,
thanks to the assumption (A2), we can show, by
retaking if necessary, the 0 satisfies the condi-
tion of Lemma 2.2.

Next, we state an abstract heat convection

equation. We start with making the change of
variables. We denote b b and 0 0 (Later
we retake ). Then we put
u-- + b 0-- + , (x, y) d(x* *)Y

dt* * p*= O=p--
d

t: , d’
By these relations, we have new variables
* * * * t*u 0 ,p ,x y and But, after changing

variables, we abbreviate asterisks and use the
same letters u, 0, p, x, y, and t for the simplic-
ity. Then, equations (1) are transformed to the
following:

u, + (u" V )u Vp + Au (u’V)b
(b’V)u- RO- - (’)

+ Ab + dg/ R(O- P-) in ,
(5)

div u 0 in ,
0 + (u" V) 0 P-AO + P-AO

(u’V)O-- (b’V)O- (b’V)O in ,
u o, o, o for any

t (0, ),
(7) u(’, t + T) u(’, t), 0(’, t + T)

0(’, t) in (t + T) (t),
where R agTod/xv, P= / and T is a

period.
Then, we introduce a proper lower semi-

continuous convex (p.l.s.c.) function:

1 fB 12 -1

-ff ([Vu + P I 01bd 
(8) PB(U) if U HI(B) Ho(B),

+ oo if U (Ha(B) if(B))\
(HI (B) H(B)

Here we define a closed convex set K(t) of

Ho(B) L (B) by K(t) ( U Ho(B) L (B)
U-0 a.e. in B\(t)} and denote its indicator

function by In(t), that is, In(t)(U)--0 if U
K(t) and + c if U (Ho(B) L2 (B) \ K(t).
Then we define another p.l.s.c, function:

(9) qt(U) qB(U) 4- In(t)(U) for each t [0,
with the effective domain

D(9t) {U Ho(B) x L2(B); Ulg(t)
H (Y2(t)) x Ho (Y2(t)), U I,\(t) 0}.

Let qt be the subdifferential operator of
then we have:

)D(09 ( U H,(B) L(B) U
(H(D(t)) f Hi(T2(t))) x

(g(D(t)) H(D(t))), gl\t, 0).
Oq(U) (f Ho(B) x L(B) ;P(f2(t)) fl(,

A (Y2(t)) U
Here A((t)) (-- P((t))A, (1/P)A),
P((t)) (Po((t)), 19(t)), and Pa((t)) is a

projection ff (Y2(t)) -- Ha(Y2(t)).
Then we have the following abstract heat

convection equation AHC in H,(B) L(B)
d__V + Opt (V(t)) + F(t) V(t) + M(t) V(t)(10) dt

where
P(B)f(t), t (0, oo),

V- (v, 0) and P(B) (Pa(B), 1)"
moreover
F(t) V(t) (Pa(B) (v" V) v, (v" V) 0),
M(t) V(t) (Po(B) ((v" V) b + (b. V) v + RO),

(v" [7) 0 + b. V) O)
2

f= (-- b (b V)b + Ab + d3g/v
R(O-- (I/P)), (1/P)zaO-- (b.V)O).

Well, we define the strong solution of AHC
(see [10]).

Definition 2.3. Let V’[0, S] - Ha(B)
L (B), S (0, oo). Then V is a strong solution of
AHC on [0, S] if it satisfies the following prop-
erties (i) and (ii)"

(i) V C([0, S]; H(B) LZ(B)) and
dV/dt exists for a.e. t (0, S].

(ii) V(t) D(qt) for a.e. t [0, S] and

there exists a function G’[0, S] -Ha(B) x L2(B) satisfying G(t) O(flt(v(t))
and
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dV
(11) + G(t) + F(t) V(t) + M(t) V(t)

P(B) f (t) for a.e. t [0, S].
Remark 4. I V is a strong solution, then

or any z > 0, both dV/dt and G belong to La(z,
S Ho(B) L(B)) (see [10]).

Definition 2.4. A strong solution of AHC is
called a periodic strong solution (resp. a strong solu-
tion of the initial value problem) if it satisfies the
condition (12) (resp. (13))’
(12) U(t + T) U(t) fort [0, oz)

in H(B) La (B)
(13) U(0) (, /) in Ho(B) La(B),
where (a, h) Ho(,(2(0)) L (,Q(0)) and [z
mean extensions of a, h to B with putting zero out-
side [2(0) respectively.

3. Results. In our previous paper ([14]),
we had a theorem stated as below"

Theorem 3.1. If physical data, domain con-

stants and the period T satisfy the relation (RTP)’
(eC) - log(1 + 2A) <- T, then there is a periodic
strong solution of AHC. Here C is a domain con-
stant, > 0 is an appropriate small number and A
does not include b but includes T.

Remark 5. A 8 ((4 ) C)-l(I R +
V0 []-g,) (4t / u eC1) -1.

In this paper, we will improve the above re-
suits. Let us make assumptions.
(A 6) b L (0, oo Ha(B)), bt L (0, oo L (B))
and L=(0, oo ;Ha(B)).

Theorem 3.2. If Assumptions (A1)(A6) are

satisfied, then the following hold"
(i) For sufficiently small R cegToda/tcu,

there exists a periodic strong solution of
AHC with period T.

(ii) In addition to the above condition, if

are sufficiently small and u is lorge
enough, then the periodic strong solution

several lemmas.
Lemma 4.1. There exists a positive constant

for every tC such that q) U) >- C u II=<B,
[0, S] and U Hi(B) x H(B).

The next lemma is a version of Lemma 2.1
of Foias, Manley and Temam [2].

Lemma 4.2. Let U (u, O) be a strong
solution of AHC. Then

v + 0(0)l} exp( 2ct/v)
holds for t (0, o), where B] is a volume of B.

The following lemma is important.
Lemma 4.3. (i) Let U (u, O) be a strong

solution of AHC. Then, for an arbitrary 6 (0, S),
there are positive constants a(6) (i 1,2,3), inde-
pendent of S, depending on b and O, such that
(15) qgt(U(t)) <- (a2(6) /6 + aa(6))exp(a!(6))

for any [6, S].
(ii) Furthermore, if U is a periodic strong solution

with period Tp, then the same estimate holds for
all t [0, Tp].
Proof of Lemma 4.3. Multiplying AHC by

G(t) and integrating on B, then we have for a.e. t
(0, S]

d
() -di (u(t) ) + G (t)

<_ c, v<o I1’". v<t)fix. G<t)fl
+ (M(t)S(t), a(t))I + IIf(t)II-II G(t)II
/ c G(t) I1" ’< U<t) )1/2 -JI- C39 (U(t) ),

where II-I1 -11-I1,<, and C,(i > 1) are domain
constants. From (16), we have

d qot 1
(17) d-/ (U(t)) + y V(t)

<_ c u(g) I10 (u(t) / C6Mlq9 ( U(t)
+ (2Cff + Ca) 99t(U(t)) + 2 f I1,,

where M1 b I]1" b 112 + 2 b I1" b 112 + II1
0 I]2 + R [2 and f 11,2 f []L**(O,oo;Lg(B)) Here

we used (3.23) of Chap. III in Temam [20]. On
the other hand, multiplying AHC by U(t) and in-
tegrating on B, then we get

is unique.
(iii) Under the same assumptions on b, bt, 0 (18)

and 9, the periodic strong solution U(t)
obtained in (i) is asymptotically stable in
the following sense, that is,

where U(t) is a strong solution of AHC
with U(O) U(O) + Uo and Uo is an
arbitrarily given data in Ha(f2(0))x
L2(S2(0)).

4. Proof of the theorem. We shall state

d U(t)II -- 2C U(t)I[ _< (4JR 12/C,)
0(t) + 2 f 11,2 / C1 for a.e. t (0, S],

where we used Lemma 2.1 and Lemma 2.2 with
suitable s > 0. Thanks to Lemma 4.2 and (18),we
see for any t (0, S]
(19) g(t)[I _< exp(-- 2Clt)1[ U(O)I[

+ {(2JR [Z/C)(i B lxZ/v + 0(0) z)
+ fl[z=,z/CZx} (1 exp(- 2Cxt)).

Thus, noting U(t) is continuous at t 0, we get
an a priori estimate:
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(20) U(t) <_ Co+ CO U(O) for any
t [0, S],
where Co (2JR [ [B Ix/" / f I[oo,)/c
and C 1 + 2[R ]/C.
Making use of (17), (20) and the uniform Gron-
wall inequality, we get (15), where

a(6) (2C
+ c(Co + c u(o)ll)a(a)a,

(21) a(a) 2-’(Co + C v(o)lib
+ (a/C) (2IR (I B [)c/
/

Concerning (ii), we can show by means of the
periodicity of U(t) and data. (see [141.)

Lemma 4.4. If U is a periodic solution, then
we have
(22)
(23) u(o)II

Lemma 4.5. (see [14]). For any U (a, h)
H(0) H(Q(0)) L2(Q(0)), there exists a

unique strong solution U of AHC on [0, S] with
U(O) Uo.

Proof of Lemma 4.5. For Uo H(0), there
exists a sequence { Uo,n} H2 (Q(0)) Ho (Q(0))
such that Uo,n- Uo I1- 0 as n-- oo. Then we
have strong solutions Un of (AHC) with Un(O)
Uo,n and by means of Gronwall’s inequality we
get U,(t) Urn(t)IIn, < C Uo.n Uo,m IIH(o)
for all t [0, S], where H. Ho(B) x L(B)
and a constant C > 0 is independent of n, m, t.
Hence we obtain U C([0, S] ;H.) such that
U,(t)- U(t)II..- o as n--- oo uniformly on

[0, S]. Moreover, by viture of (15) and the lower
semicontinuity of qo, we see U(t) D(o) for
any t
(0, S) and consider an initial value problem as
follows:

dV/dt + a(p’ (v(t)) + F(t) V(t)
+ M(T)V(t) P(B)f(t)

for t [6, S], V(6) U(6) D(9).
Then a unique solution of this problem exists
and we get an estimate Un(t)- V(t)IIH-< C
u<a) v(a)IIH() for all t [c], S]. Letting

n--* oo, then we have U(t)- U(t)IIH, 0 for
all t
C([0, S];Hs), therefore we see that U is a
strong solution with U(0) Uo.

Proof of Theorem 3.2. To start with, we
prove (i) of the theorem. Here we assume IRI
<_ C/4. Multiplying AHC by U(t), then we have

1 d
(’0(24) g-d-/l[ U(t)II + 2 (u(t))

<_ ((u. V)b, u)I / ((b. V)u, u)
+I(RO, u)I + ((u. v>
+ ((b" V)O, O) + (f(t), U(t))

<_ s v u / R l" 0 II" / s’ v0 I1" v
/ f<t)I1" u<t)II
1 ot 4-<-- - U(t) x 4 + f ll,2,

where we used Lemma 2.1 with s 1/8 and
Lemma 2.2 with s’ (1 / 8) (x / v) 1/2,
C/4(>IR I). From (24), we get

d
(25) )- U(t) + 2 C U(t)

and we have
(26) U(t)II <_ exp(-- 2Clt)

4- (1/C1) fll,,.(1 exp(-- 2Ct)).
Here we define a mapping as follows"
(27) v" H H(0) -= Ho(t9(0)) x L2(t9(0)) H,
(28) vU(0) U(T) in H.
Here we used (0) Q(T) and Lemma 4.5. We
see v is continuous in H. Moreover, v is compact
in H, since vU(0) U(T)is included in a

bounded set of H(Q(0)) x Ho(x2(0)) by Lemma
4.3. On the other hand, if we taker r > 0 such
that (1/C1) []f]1oo,2 -< r, then for U(0) with
U(0)II <- r we have by (25)

(29) U(T)II _< (exp(- 2CT))r
+ r(1 exp(- 2CT)) r2.

Therefore, we see TBr Br, where B
n;ll Ilu <- r}. Hence, by Schauder’s fixed point
theorem, there exists Vo H such that vVo Vo.

Next we prove (ii). Let U be the periodic
strong solution in (i) and U be any periodic solu-
tion. Put W- U- U, then we have
(30) (1/2)(dll W(t) II/dt) + 2qt(w(t)) <

CTrp’ (W(t) rp’ (U (t)) 1/2

_
CsN(t) rp’ (W(t)

for a.e. t [0, Tel. Here N(t)
[[V0(t) +lR I. Noticing (ii) of Lemma 4.3, (21),
(22), (23), and using the assumptions of (ii) of
this theorem, then we find 2 CTrpt(U (t)) /

CsN(t) > 0 for t [0, T]. Thus, we can show
the uniqueness of the solution for small data.

Finally, we mention the proof of (iii). Let
U(t) be a strong solution of AHC with the initial
condition U(0) U(0) + Uo where Uo

H(Q(0)) x Lz(.Q(0)). Put V= U-- U. Then
we have the similar type inequality to (30) on V.
Moreover by virtue of the smallness assumptions
on data and the periodicity we can take 2 2
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CTp’ U (t) ) ’/2 CsN(t) > 0 and we get V(t)
-< V(0)][2 exp(-- 22C,t) for any t (0,
Hence, we have shown the (exponential) asympto-
tic stability of the periodic solution U.
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