Remark on Upper Bounds for $L(1,\chi)^{+)}$

By Shin-ichi KATAYAMA

Department of Mathematical Sciences, Tokushima University (Communicated by Shokichi IYANAGA, M. J. A., April 12, 1996)

§1. Let k be a real quadratic field of discriminant Δ . Let χ be the non-trivial Dirichlet character of k and $L(s, \chi)$ the L-function attached to χ . In [2], Hua obtained the following upper bound for $L(1, \chi)$:

$$L(1, \chi) \leq \frac{1}{2} \log \Delta + 1.$$

It was shown in [7] that, in the case $\Delta \equiv 1 \pmod{4}$

$$L(1, \chi) \leq \frac{1}{2} \log \Delta + \gamma - \frac{1}{2},$$

where $\gamma=0.57721...$ is Euler's constant. Let $\varepsilon(>1)$ be the fundamental unit of k and h be the class number of k. From the class number formula, the above upper bounds yield respectively the following inequalities

$$h\log\varepsilon \leq \frac{\sqrt{\Delta}}{4}\log\Delta + \frac{\sqrt{\Delta}}{2},$$

$$h\log\varepsilon \leq \frac{\sqrt{\Delta}}{4}\log\Delta + \sqrt{\Delta}\left(\frac{\gamma}{2} - \frac{1}{4}\right).$$

We denote $\frac{\sqrt{\Delta}}{4}\log\Delta+\frac{\sqrt{\Delta}}{2}$ by $H(\Delta)$ and $\frac{\sqrt{\Delta}}{4}$

$$\log \Delta + \sqrt{\Delta} \left(\frac{\gamma}{2} - \frac{1}{4} \right)$$
 by $W(\Delta)$, respectively. In

the following, we restrict ourselves to the case when Δ is a prime p of the form 4n + 1. In this case, T. Ono has obtained the following inequality in his paper [6]:

$$\varepsilon^{h} \leq \frac{2}{\sqrt{p}} (1 + \omega) \left(1 + \frac{\omega}{2} \right) \cdots \left(1 + \frac{\omega}{n} \right)$$
$$= \frac{2}{\sqrt{p}} \binom{n + \omega}{n},$$

where $\omega = \frac{1+\sqrt{p}}{2}$ and $\binom{n+\omega}{n}$ is the generalized binomial coefficient.

Putting
$$O(p) = \log \left(\frac{2}{\sqrt{p}} \binom{n+\omega}{n} \right)$$
, we have an upper bound

$$h\log \varepsilon < O(p) = \log 2 - \frac{1}{2}\log p + \sum_{k=1}^{n}\log(1 + \frac{\omega}{k}).$$

In this paper, we shall show O(p) < H(p) for any $p \ge 5$ and O(p) < W(p) for $5 \le p \le 661$ and O(p) > W(p) for $p \ge 673$. Since it is obvious that W(p) < H(p) for any $p \ge 5$, we have the following theorem.

Theorem. With the above notation, we have O(p) < W(p) < H(p) for the cases $5 \le p \le 661$.

$$W(p) < O(p) < H(p)$$
 for the cases $p \ge 673$.

§2. Since the gamma function $\Gamma(x)$ is logarithmically convex (see [1]), one can easily show the following lemmas 1, 2 for $0 < s \le 1$, using the functional equation $\Gamma(x+1) = x\Gamma(x)$:

Lemma 1. For any natural number n and any s > 0, we have the inequality

$$\frac{n^s}{\Gamma(1+s)} \le \binom{n+s}{n}.$$

Lemma 2. For any $0 < s \le n \ (\in \mathbb{N})$, we

have

$$\binom{n+s}{n} \leq \frac{2(2n)^s}{\Gamma(1+s)}.$$

Combining the fact $n = \frac{p-1}{4} > \frac{1+\sqrt{p}}{2} = \omega$

for $p \ge 13$, and the above lemmas, we have

Lemma 3. For any prime $p = 4n + 1 \ge 13$,

$$\frac{n^{\omega}}{\Gamma(1+\omega)} \leq \binom{n+\omega}{n} \leq \frac{2(2n)^{\omega}}{\Gamma(1+\omega)}$$

From Stirling's formula, one knows

$$\frac{e^{\omega - \frac{1}{12\omega}}}{\sqrt{2\pi}\omega^{\omega + \frac{1}{2}}} < \frac{1}{\Gamma(1+\omega)} < \frac{e^{\omega}}{\sqrt{2\pi}\omega^{\omega + \frac{1}{2}}}.$$

From the right hand side inequality in Lemma 3 and the right hand side inequality of this formula, one sees

$$O(p) < \log\left(\frac{4(2n)^{\omega}e^{\omega}}{\sqrt{2\pi b}\omega^{\omega+\frac{1}{2}}}\right) < H(p) + A(p),$$

where
$$A(p) = \frac{1}{2} (1 + \log 16 - \log \pi - \log p)$$
.

Since A(p) is a monotone decreasing function and A(17) = -0.102... < 0, we have O(p) < H(p) for $p \ge 17$. In the cases p = 5 and 13, a direct

^{*)} Dedicated to Professor Hiroaki Hijikata on his 60th birthday.

computation shows the inequality O(p) < H(p). Hence O(p) < H(p) for any prime $p = 4n + 1 \ge 5$.

On the other hand, from the left hand side inequality of Lemma 3 and the left hand side inequality of Stirling's formula, one sees

$$O(p) > \frac{\sqrt{p}}{4} \log p + \frac{\sqrt{p}}{2} B(p) + C + D(p),$$
 where $B(p) = 1 - \log 2 + \log \left(\frac{\sqrt{p} - 1}{\sqrt{p}}\right) - \frac{\log p}{\sqrt{p}},$ $C = \frac{1}{2} (1 + \log 2 - \log \pi) = 0.274...$ and $D(p) = \frac{1}{2} \log \frac{\sqrt{p} - 1}{\sqrt{p} + 1} - \frac{1}{6(\sqrt{p} + 1)}$. Since $B(p)$ and $D(p)$ are monotone increasing functions, we have $B(1277) = 0.0783... > \gamma - \frac{1}{2} = 0.0772...$ and $C + D(1277) = 0.241...$, and we obtain $O(p) > W(p)$ for $p \ge 1277$. Finally, a direct computation for $5 \le p \le 1249$ shows $O(p) < W(p)$ for any prime $p = 4n + 1 \le 661$ and

W(p) < O(p) for any prime $p = 4n + 1 \ge 673$.

References

- [1] Artin, E.: Einführung in die Theorie der Gammafunktion. Verlag, Berlin (1931).
- [2] Hua, L. K.: On the least solution of Pell's equation. Bull. Amer. Math. Soc., 48, 731-735 (1942).
- [3] Hua, L. K.: Introduction to Number Theory. Springer-Verlag, New York (1982).
- [4] Katayama, S-G.: Experimental number theory II-bounds for class number of real quadratic fields. Res. Bull. Tokushima Bunri Univ., 43, 167-199 (1992).
- [5] Louboutin, S.: Majoration explicits de $|L(1, \chi)|$. C. R. Acad. Sci. Paris, **316**, 11–14 (1993).
- [6] Ono, T.: A deformation of Dirichlet's class number formula. Algebraic Analysis. II. Academic Press pp. 659-666 (1988).
- [7] Stanton, R. G., Sudler, C. and Williams, H. C.: An upper bound for the period of the simple continued fraction for \sqrt{D} . Pacific J. Math., 67, 525-536 (1976).