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The Embeddings of Discrete Series into Principal Series for
an Exceptional Real Simple Lie Group of Type G,

By Tetsumi YOSHINAGA™ and Hiroshi YAMASHITA™* ™

(Communicated by Kiyosi ITO, M. J. A., April 12, 1996)

Let Gy be a connected, simply connected,
complex simple Lie group of type G,, G its nor-
mal real form, and K a maximal compact sub-
group of G. In this paper, we give a complete de-
scription of the embeddings of discrete series
representations of G into principal series. The
result is Theorem 2 in §6

1. Structures of G and its Lie algebra. Let
G, K be as above, g, (resp. t,) the Lie algebra of
G (resp. K), g, = £, D p, a Cartan decomposition
of g,. Denote by g (resp. £, p) the complexification
of g, (resp. £, p,). We take a compact Cartan sub-
algebra t, of g, and denote the root system of g
relative to t(= t, & C) by 4. Let 4, (resp. 4,) be
the set of compact (resp. noncompact) roots and
a, (resp. a,) a short (resp. long) simple root in 4.
We may assume that «; is compact, that «, is
noncompact and that 4, = {a,, 3a; + 2a,}. We
can take root vectors E,; in the root subspace for
the root ia; + ja, € 4 in the following way:
B(E,, E_; _,) =2/|ia, + jo,|°, E_,,=—E

ij9 ij?

[Elo» EOI] = 11, [Em, Ell] = 2E21,
[E\y, Enl = 3E,, By E_3_] = Ey,
where B(-,-) is the Killing form of g and X is

the complex conjugate of X relative to the com-
pact real form £, v — 1p, of g. Set H,; = [E,,,

E_,_;]. Equip g with the inner product (-, *)
defined by (X, Y) = — B(X, Y). Define a sub
space a, of g, as a, = R(E,, + E,_,) + R(E,,
+ E_,_)), then q, 1s a maximal abellan subspace
of p,, and equip C(0 with the lexicographic order
relative to the ordered basis (Ey + E,_,, E, +
E_,_) of a, Let ¥ be the system of restricted
roots of g, with respect to a, and rta positive
system of ¥ Then we have an Iwasawa decom-
position g, = £, D a, D n, (resp. G = KAN) of g,
(resp. G). We see that f, =~ 3u(2) @ 3u(2) and
t=31(2, C) D312, C). The root system 4, is
of type A, @ A,, and direct computations give
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that K= (SU@2) x SU@2))/D with D = {1,
(— 1, — 1.}, where 1, is the unit matrix of de-
gree 2.

Let M be the centralizer of A in K, then
M = {1, m,, m,, mm,} with

m=((T ) 0T )

() )

2 1 0 /’\1 0 ’

where gi is the image of g € SU(2) x SU(2)
under the covering homomorphism of SU(2) X
SU(2) onto K. Define a unitary character o, of
M through o, ., (m;) = ¢; for j = 1,2, then M =
{aes le; = +1(]—12)} For each y € a* =
ay ® C gives an one-dimensional representation
¢“ of the vector group A = expa, Put P=
MAN and we consider the principal series
Indg(del,%@e”@l]v), of G induced from the
minimgl parabolic subgroup P.

2. Irreducible K-modules. Let X, Y, H be
elements in 81(2, C) with [H, X] = 2X, [H, Y]
= —2Y,[X, Y] = H The (d+ 1)-dimensional
irreducible 81(2, C)-module is denoted by V,.

Take a basis {e,(,d) |p=—d, —d+2,...,d of
V, satisfying the relation
(d) (d)
H-e, = pe,
X-e =z, p=—d, —d+2,..., d-
@ _ @ @
Yee, =, ,¢, ,

1
Here, 2, = 5\/((1 —p(d+ p+ 2). We regard

(d)

as 0 if p&f{—d, —d+2,...,d}. Fora
A -dominant, 1ntegral linear form A on t, put
nonnegative integers 7, s as r= A(H,), s =

A(H,,). The finite-dimensional irreducible repre-

sentation of K with highest weight A is denoted

by (z;, V). Then V, = V, ® V,. Here ® means

an exterior tensor product. So we identify these

two modules and take a basis {e,,’} of V, ® V.
(rs) __ (r) (s)

Here e,, = ® e, . Note that p = V, ® V, as

K-modules.
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3. Gradient type differential operators. The
K-module V,®p decomposes as V,Qp=
D ses,mB) - Viyg, with multiplicity m(,B) =0,1
for B8 € A,. Take a positive system 4™ of 4 con-
taining A:, and put V™ = @z m(— B Vg,
where 4, = A" N 4, is the set of positive non-
compact roots. Let P, be the orthogonal projection
of V,®p onto V. For a representation (z, V)
of K, define two function spaces C, (G) and
C7(G; 1, as

CIQ) = (f: G5 V| flkg) = ck) f @)

(V(k, 8 € K X ()},

CI(G;1y) = (f:G> V| flkgn) = t(k) f(g)
(V(k, g, n) € KX GX N}
We define a gradient-type differential operator
D, on C; (G) by
VHig=ZL,fl@ X,
J

@)@ =P WVf(g)),
where Ly is the differentiation with respect to
the right invariant vector field on G defined by
an element X in g and {X;} is an orthonormal

basis of p relative to the inner product (-, *).

Put 9,, = 9, |c:j(c;1N).

4. Parametrization of discrete series of G.
Let 5, be the totality of A -dominant,regular, in-
tegral linear forms A on t. For each A € E, 4"
denotes the positive system of 4 for which A is
A" -dominant. By Harish-Chandra [1, Theorem
16], discrete series representations of G is para-
metrized by &, and we denote the discrete series
of G with Harish-Chandra parameter A by 7,
Let A;(J = I, II, III) be positive systems of 4
with simple roots listed below:

J |1 | 11
simple roots\ ay, az\al +a, — a2| — o, — &, 3a, T 20,

For a discrete series 7w, of G, the corres-
ponding positive system A" ={ae< 4] (a, A
> 0} C A4 is one of the above A4;’s. Define three
subsets &, (J=1I,II,III) of 5, by £&E, =

1 1
{Ae 5 |A" =4} Put o, = o Zaess®, Oy = 5

Zaess@ and A=A —p + p, The discrete
series 7, has the lowest K-type 7; and A is cal-
led the Blattner parameter of 1,.

5. Method for the determination of embed-
dings. Take a discrete series m, of G and set
A" as above. The Blattner parameter A of 7, is
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said to be far from the walls if 2 — 2508 is
A, -dominant for any subset @ of 4,. For an
irreducible representation & = 0 & ¢“ with ¢ €
M and ¢ € o*, put €= 0 ® ¢“*. Here 0, € a)

1
is defined by pp(H) = o tr ad(H) |,, for H € a,

It is easily seen that MA acts on Ker @,, by
right translation. The determination of the
embeddings of discrete series into principal
series as (g, K)-modules is based on the follow-
ing theorem proved for gengeral semisimple Lie
groups with finite center.

Theorem 1 (cf. [3, Theorem 3.5]). If the
Blattner parameter A of T, is far from the walls,
then
Hom(g,x)(n',], Ind (E@].N)) = Hom(aM)(E Ker 2, 1N)
as linear spaces. Here 7Z'A denotes the discrete series
of G contragredient to T,.

6. Complete descrition of embeddings. De-
fine an automorphism # of g by

E,)

. (exp % ad(E,, — E_z,_1)>.

Note that # maps t onto a. For A € &, let
A,(J=1I, II, IID be the unique element in A;
N W-A, where W is the Weyl group of 4. Furth-
er let A be the ¥*-dominant element in a* conju-
gate to A" under the action of the Weyl group
W(W) of . Define discrete series representa-
tions 7,(J/ = I, II II) by m; = m,. Then these
three m,'s are the mutually inequivalent discrete
series with the same infinitesimal character A.
Put 4,7=12, as 4, - u= — 2a; + a,) and
A,>u = 3, + a,, then these A;’s are simple roots
of " The reflection relative to A, is denoted by
s;. The following theorem describes the embed-
dings of discrete series of G into its principal
series.

Theorem 2.
Oupe, € M, 11 € 0™,
dim Hom g 4, (7, Ind,,(asl L,V <1,
and the equality holds if and only if
p=sAand (¢, ¢,) €S,(J,s) with an s € W(J),
where W() and S,(J, s) are subsets of W(¥)
and {£ 1} X {£ 1} defined respectively as follows:

WD) = {s,, s,8,},

WD = {1, s,, S5, 8155 S84},

WUID = {s,, s,8,},

u = (exp% ad(E,, —

For A€ &, J=1,1I,III,

and
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S,(II, 1) = {((— D7+, (= 127 ~*?),
((___ 1)%(r’+s’+2)’ + 1)}’
({((— 17, (— 1)%(7’-#-5’))}
for J=1
(= DE7*, (= D™,
1,7t
((_ 1)5(7 +s +2)’ + 1)}
¢ for J =11,
- {((_ 1),7" (_ 1)%(7’—S'+2))’
((— 1)7 +1, + 1)} foy]: II
1 4 ’ ’
(=D, (=7,
(=D, (= D)

S U, s) =

SA(/’ 32) =

) for J = III,
SA(,’ 3132) = {(&£ 1, (— 1)%(r’+s’+z))}
for J=1II, III,
1., ’
S, sps) = (= DF7~*2 £ 1))
for J=1,II.

Here v’ = A(H,y) and s" = A(H,,).

7. Sketch of the proof of Theorem 2. Here
we illustrate the outline of the proof in case J =
I, where » = A(H,) and s = A(H,,) are non-
negative integers so that s — 7 is even and is not
less than 4. Let f be a function in C:(G;lN),
then f can be expressed uniquely in the form

fl@ = PZ (@ ey,
4

with smooth functions c¢,, on G. Rewriting the
condition ¥, f= 0 in terms of ¢,,’s, we obtain
the following system of differential equations:
(71) @L,—2s+p+q—2)cy, =0,
(7.2) Vs —q QL+ p + 39c,, +
2 +2=—p)r+p(s+2+¢q ¢ppe =0,

(73) —vVs+2+q@p+3¢g+6—2L)c,,,,

+2/r—pr+2+p)(— 9 ¢)ppy =0,
(7.4) @s+p+q+4—2L)c, =0,
forp=—7r,—r+2,...,7andg=—s,— s+ 2,
..., $— 2. Here Ly = Lg ,p, _ and L, = Lg, ,p , .

Since ¢,,’s are determined by their values on A4,
we consider the equations for ¢,,’s such as (7.1)-
(7.4) only on A, though c,,’s are functions on G. By
(7.1) and (7.4), we have (p + @¢,, =0 if ¢ # L's.
So ¢,, =0if ¢g# £ s and p + g # 0. For ¢,,’s with
q= T s, (7.2) and (7.3) and the previous fact show
that ¢,, = 0if p # rand that ¢, _ =0ifp # — 7.

To determine the form of the function c,,, define
smooth functions ¢,, on R’ by

ooy, ) = cpp(exp(x,(Ey + E, )
+ x,(E,, + E_,_))),

for real numbers x;, x,. Then the equations (7.1)-
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(7.4) give a system of partial differential equations
for ¢,,'s. For instance, we can find the following
equations for ¢, _,'s.

(7.5) - (a% +s+ 2)5,,,_,, =0,

0
(7.6) —Vstp (555; + p)c‘,,_,
+VoF2=pDTFPNGCF2=D) éppp =0,
G}
(7.7) = (=g + )

VT GTF2FDGF2ZFD G0npan = 0.
These three equations tell that ¢ ,_,(x;, 2,) = a,
exp(— (s + 2)x, + rx,) for a scalar constant a,. In
a similar way, ¢,; and c¢_,_; are determined up to
scalar multiples. By using (7.6) and (7.7) again, we
have the following inductive relation for constants
a,'s,

_ s+pr+p)
e t2—pet2—p
for p = —r+2,..., ». This implies that a, = a,a,
with
a, =

2rQr=2)--(r+p+2)-(s+nNGs+r=2)---(s+p+2)
r=p)r=p=2)2(s=pls—p=2(s—r+2) -
Define linear forms y,, u, on a through
t(Ey + Ey_) = —(s+2),
i(Ey + E_, ) =7,
U (Eyy T Ep_) = —(s—7r+4)/2,
U, (Eyy + E_,_ ) = —(r+ 3s)/2.
Argue as above for ¢,, and c_,_;, we see that
Ker 2, ,, is contained in the linear span of the
following three functions f,(* =0, +, —).

(rs)
fila) = % a,ae,”,,

fol@ = a“(ey + ey,

f(@) = a"(e;” — el}),
for a € A, where a” = exp(u(log @)), and ex-
tend these fi's to G through fy(kan) = 7,(k)
fi(a) for k € K, a € A, n € N. 1t is easily seen
that these fg's actually form a basis of Ker
Diye

To see the MA-module structure of Ker

D34, we decompose it into irreducibles by seek-
ing its suitable basis. In case J = I, the subspace
Cf, for each of the above three f,'s is an MA-
invariant subspace of Ker %,, and as MA-
modules

Cfo ~ (0'(_1)r’(_1)(r+s)/2) ® e”‘,
Cf, = (0'(_1)(3—r)/z’1) ® e”’,
Cf. = (U(—1>‘5"’/2,—1) & .
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Applying Theorem 1 to this result for the
MA-module structure of Ker 2,,  and rewriting
the parameters, we can specialize parameters &,
&, and y satisfying
Hom ., (n}, Ind; (0, ., ® " @ 1)) # (0),

for discrete series m, whose Blattner parameter
is far from the walls. Keeping in mind the fact
that each discrete series representation of G is
self-contragredient and calculating s+ A for each
s in the Weyl group of ¥, we can varify the
assertion in the theorem if the Blattner para-
meter of w, is far from the walls.

To get rid of the restriction that A is far
from the walls, Zuckerman’s translation functors
can be wused. See [5, Corollary 5.5] and |2,
Theorem B.1].

For the case J = II or J = III, by similar
but more complicated computations, we can de-
rive the statement in the theorem.
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The details of this paper will appear else-
where [4].
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