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The Embeddings of Discrete Series into Principal Series for
an Exceptional Real Simple Lie Group of Type 62

By Tetsumi YOSHINAGA *) and Hiroshi YAMASHITA* *)

(Communicated by Kiyosi IT0, M. J. A., April 12, 1996)

Let GC be a connected, simply connected,
complex simple Lie group of type G2, G its nor-
mal real form, and K a maximal compact sub-
group of G. In this paper, we give a complete de-
scription of the embeddings of discrete series
representations of G into principal series. The
result is Theorem 2 in 6

1. Structures of G and its Lie algebra. Let
G, K be as above, go (resp. fo) the Lie algebra of
G (resp. K), go- fo [ Po a Cartan decomposition
of go. Denote by g (resp. f, p) the complexification
of go (resp. fo, Po). We take a compact Cartan sub-
algebra o of go and denote the root system of
relative to t(-- o C) by A. Let A (resp. An) be
the set of compact (resp. noncompact) roots and
cr (resp. or2) a short (resp. long) simple root in A.
We may assume that or1 is compact, that cr is
noncompact and that A+ {cry, 3oh + 26r2}. We
can take root vectors E in the root subspace for
the root icr + jerk. A in the following way"

B(Eij, E_i,_j) 2/] in1 + ja21, E_i,_ E,
[El0, E01] EI, [E0, Ell] 2Eal,
[E,0, E21] 3Ez,, [E3, E_3,_1] E0,,
where B(’,.) is the Killing form of fl and X is

the complex conjugate of X relative to the com-
pact real form to @ v/- 1 Po of g. Set Hit-
E_,_]. Equip g with the inner product (’, ")
defined by (X, Y): --B(X, Y). Define a sub-
space ao of go as ao- R(Eo + Eo,_ 1) + R(E21
+ E_2,_), then ao is a maximal abelian subspace.
of Po, and equip ao with the lexicographic order
relative to the ordered basis (Eo + Eo,_ 1,

E_2,_ x) of ao. Let gr be the system of restricted
roots of go with respect to ao and gr+ a positive
system of gr. Then we have an Iwasawa decom-
position go o ao no (resp. G KAN) of go
(resp. G). We see that to gu(2)@ gu(2)and
t g[(2, C)@ g[(2, C). The root system A is

of type AI@ A1, and direct computations give
*)

versity.
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that K (SU(2) SU(2))/D with D- {1,
(-- 12, 12)}, where 12 is the unit matrix of de-
gree 2.

Let M be the centralizer of A in K, then
M {1, rnl, rn2, rn:rn2} with

0 -1 0 -1
rna= 1 0 1 0

where g$ is the image of g S U(2) S U(2)
under the covering homomorphism of S U(2)
S U(2) onto K. Define a unitary character asl, of
M through a,,.(rn) for j 1,2, then M-

+ l(j 1,2)}. For each / a
ao ( C gives an one-dimensional representation
e of the vector group A expao. Put P=
MAN and we consider the principal series

Ind(a,,(R) e’(R) IN), of G induced from the

minimll parabolic subgroup P.
2. Irreducible K-modules. Let X, Y, H be

elements in (2, C) with [H, X] --2X, [H, Y]
2Y, IX, YJ- H. The (d + 1)-dimensional

irreducible [(2, C)-module is denoted by V.
(d)

Take abasis {e P-- d, d+2,..., d} of

V satisfying the relation
(d) (d)H" e pe
(d) (d) (d)X’e, x, e,+2 (p d, d + 2,..., d)"
(d) (d) (d)

(d) 1
Here, x --v/(d--p)(dq-p + 2). We regard

(d)e as 0 if p {-- d, d+ 2,..., d}. For a

Ac+-dominant, integral linear form on t, put
nonnegative integers r, s as r /(Hlo), s

/(H2). The finite-dimensional irreducible repre-
sentation of K with highest weight / is denoted
by (va, Va). Then Va - Vr V Here ()means
an exterior tensor product. So we identify these

(rs)) of V ( Vtwo modules and take a basis {e
(rs) (r) (s)Here e e (: Note thate P V3 Vx as

K-modules.
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3. Gradient type differential operators. The said to be far from the walls if /- ZQfl is
+K-module V @p decomposes as V @p Ac+-dominant for any subset Q of An. For an

z,m(fl)" V+z, with multiplicity m()--0,1 irreducible representation - a@ eu with a
for fl An Take a positive system A + of A con- M and a put -- a@eu+e Here pp ao

+ and put V ],m( /9). V_z,
is defined by pe(H) tr ad(H)[no for H ao.

taining Ac, 1
where A+ A + Iq A n is the set of positive non-
compact roots. Let P be the orthogonal projection It is easily seen that MA acts on Ker, by
of V(:) onto V-. For a representation (v, V) right translation. The determination of the
of K, define two function spaces C (G)and embeddings of discrete series into principal

C’(G;1n) as series as (fl, K)-modules is based on the follow-

C(G)-- {f" G c_ V[ f(kg)- v(k)f(g) ing theorem proved for gengeral semisimple Lie

(V (k, g) K G)}, groups with finite center.
Theorem 1 (cf. [3, Theorem 3.5]). If the

C(G ln) {f G c V[ f(kgn) v(k)f(g) Blattner parameter /2 of rCa is far from the walls,
V (k, g, n) K x G N) }. then

We define a gradient-type differential operator Hom%>(ZCA*, Indea( @ 1g)) Hom(,M)(* Ker 1)
on C(G) by as linear spaces. Here 7A denotes the discrete series

(I7f) (g) Z Lx,f(g) X,
(f) (g) pa ([7 f (g) ),

where Lx is the differentiation with respect to
the right invariant vector field on G defined by
an element X in fl and {X} is an orthonormal
basis of p relative to the inner product (’, ").
Put 2,1N , [C(G.1N).

of G contragredient to 7A
6. Complete descrition of embeddings. De-

fine an automorphism u of g by

u exp - ad (Eo Eo,-1)

Note that u maps onto . For A i, let
+4. Parametrization of discrete series of G. Ay0 I, II, lid be the unique element in A]

+-dominant,regular, in fq W’A, where W is the Weyl group of A. Furth-Let c be the totality of A
tegral linear forms A on t. For each A c A+ *er let A be the +-dominant element in a conju-

-1denotes the positive system of A for which A is gate to Aou under the action of the Weyl group
A+-dominant. By Harish-Chandra [1, Theorem W(?) of ;. Define discrete series representa-
16], discrete series representations of G is para- tions 7r(J I, H III) by 7r] ZCA. Then these
metrized by c and we denote the discrete series three zr]’s are the mutually inequivalent discrete
of G with Harish-Chandra parameter A by zcA. series with the same infinitesimal character A.

+Let A](]- I, H, IIi) be positive systems of A Put /2,j= 1,2, as /2 u= (2a +az) and
with simple roots listed below’ /2zu 3c1 - cz, then these 2’s are simple roots

: I H III of gc+. The reflection relative to 2 is denoted by

simple roots a, az 10/1 "Al" 0/2, a2 19/1 0/2, 30/x + 2% s. The following theorem describes the embed-
dings of discrete series of G into its principal

For a discrete series zrA of G, the cortes-
series.

ponding positive system A+ (or A (a, A)
Theorem 2. For A z, J- I, H, III,+,> 0} A is one of the above A] s. Define three e /1)/, p a*

subsets ] (]-- I, H, III) of c by ]= aq,s,
dim Hom(,> (zry, Inde (a,. @ e" @ 1)) < 1,

1 1
{A c A+ A)}. Put Pc - aeace, Pn - and the equality holds if and only if

[z s’ and (sx, sg) SA(], s) with an s W(]),,,a and /2 A Pc + P,. The discrete
series ’A has the lowest K-type z-a and 2 is cal-
led the Blattner parameter of ZCA.

5. Method for the determination of embed-
dings. Take a discrete series rcA of G and set
A +

as above. The Blattner parameter 2 of ZrA is

where W(f) and SA(], s) are subsets of
and { +/- 1} x { + 1} defined respectively as follows:

W(1) {s, ss},
W(II) {1, s, sz, $1S2, $2S1}
W(III) {sz, ssz},

and
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SA(II, 1) (((-- 1) 1/2(r’+s’) (-- 1) 1/2(r’-s’+2))
((-- 1) 1/2(r’+s’+2) + 1)}

{((-- 1) r’+l (-- 1)1/2(r’+s’))}
forJ I

SA(J, sl) {((-- 1) 1/2(r’+s’’ (-- 1) r’+l)
((-- 1) 21-‘r’+s’+2) + 1)}

for J II,

(((- 1) ’, (- 1) 1/2r’-s"+),
((-- 1) r’+l, _+ 1)} for J II

SA(J, s2) {((-- 1) 1/2(r’-s’) (-- 1) r’+l)
((-- 1)1/2(r’-s’+2) (_ 1)r’)}

for J IH,
SA(J, sis2) {(-[- 1, (-- 1) 21-(r’+s’+2))

for J II, HI,
SA(J, S2Sl) (((-- 1) 1/2(r’-s’+2), + 1)}

forJ= I, H.
Here r" A (Hlo) and s’= A (H32).

7. Sketch of the proof of Theorem 2. Here
we illustrate the outline of the proof in case J
I, where r-- (Hio) and s= /(H32) are non-
negative integers so that s r is even and is not
less than 4. Let f be a function in C (G, 1),
then f can be expressed uniquely in the form

(rs)f(g) X c(g)%
P,q

with smooth functions Cpq on G. Rewriting the
condition ,l.f 0 in terms of cpq s, we obtain
the following system of differential equations:
(7.1) (2L1-- 2s+p+ q-- 2)c,q+2= 0,
(7.2) v/s q (2L + p + 3q)cm +

2v/(r + 2 p) (r + p) (s + 2 + q) c_,q+. O,
(7.3) -v/s+2+q(p+3q+6-2L2)c,q+2

+ 2v (r p) (r + 2 + p) (s q) c+,q O,
(7.4) (2s + p + q + 4 2Li)cq O,
forp--r, -r+2,..., rand q= s, s + 2,

s 2. Here L Lz0+So._ and L2
Since Cq’S are determined by their values on A,

we consider the equations for Cq’S such as (7.1)-
(7.4) only on A, though Cq’S are functions on G. By
(7.1) and (7.4), we have (p + q)ct 0 if q :/: --+ s.
So Cq 0 if q :/: _.+ s and p + q q: 0. For Cq’S with
q --+ s, (7.2) and (7.3) and the previous fact show
that Cs 0 if p q: r and that c,_ 0 ifp q: r.

To determine the form of the function Cq, define
smooth functions Cpq on by

Cq(X1, X2) cpq(exp(xi(Eol + Eo,_l)
+ x(E + E_2,_))),

for real numbers Xl, x2. Then the equations (7.1)-

(7.4) give a system of partial differential equations
for 6q’s. For instance, we can find the following

equations for 6p,_’s.

(7.5) - + s + 2 G.-, 0,

(7./ /s+ - + p

+ dr + (r + (s + p G-,--., o,
(7.7) /s p (-- - +
+ /(r-’p) (r + 2 + p) (s + 2 + p) e+,_(+) 0.

These three equations tell that 6 p,_(x1, x2)= a
exp(-- (s + 2)x + rx2) for a scalar constant a. In
a similar way, Crs and C-r,-s are determined up to
scalar multiples. By using (7.6) and (7.7) again, we

have the following inductive relation for constants
ap’S,

(s + p) (r + p)
ate-2 (s + 2 p) (r + 2 p) a,

for p r + 2,..., r. This implies that a opar
with

2r(2r- 2)... (r +p + 2). (s + r)(s + r- 2) (s +p + 2)

Define linear forms/21, /22 on a through

(E0 + Eo,_) -(s + 2),
/21(E21 + E_2,_1) r,
"P(Eol + Eo,_i) --(s- r + 4)/2,
/22(E21 + E_z,_1) --(r + 3s)/2.

Argue as above for Crs and C-r,-s, we see that
Ker ,IN is contained in the linear span of the
following three functions f.(* 0, +, --).

(rs)fo(a) , oae,_p,
(rs) (rs)f+(a) aUers + e_r_s),
(rs) (r)

f_(a) aU(ers e-r,-s,
for a A, where aa exp(/2(log a)), and ex-
tend these f,’s to G through f.(kan)= v(k)
f.(a) for k K, a A, n N. It is easily seen
that these f,’s actually form a basis of Ker
,IN’

To see the MA-module structure of Ker
,1, we decompose it into irreducibles by seek-
ing its suitable basis. In case J I, the subspace
Cf. for each of the above three f.’s is an MA-
invariant subspace of Ker, and as MA-
modules

Cfo (O’(-1)r,(-1)(r+s)/9) ( e",
Cf+ (G(_l)(s-r)/z,X) ( euz,
Cf_ ((_l,(s-r)/2,_l) ( e.
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Applying Theorem 1 to this result for the
MA-module structure of Ker a,ln and rewriting
the parameters, we can specialize parameters 1,

a and/2 satisfying

Hom(,) (zc*, Ind(a. ) e 1N)) (0), [1
for discrete series rA whose Blattner parameter
is far from the walls. Keeping in mind the fact [2]
that each discrete series representation of G is
self-contragredient and calculating s" A for each
s in the Weyl group of , we can varify the

[3]assertion in the theorem if the Blattner para-
meter of 7cA is far from the walls.

To get rid of the restriction that is far [41
from the walls, Zuckerman’s translation functors
can be used. See [5, Corollary 5.5] and [2,
Theorem B.1].

For the case J-- H or ] III, by similar [5]

but more complicated computations, we can de-
rive the statement in the theorem.

The details of this paper will appear else-
where [4].
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