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Abstract: Let L, j = 1,2, be a pair of linear partial differential expressions in R",
n 23, D < R" be a bounded domain, N;:= {w:L;w =0 in D}, N,,, is a linear subspace
in N, of finite codimension m; < o0. We say that the pair {L,, L,} has property C if the set
of products {w,w,} is complete (total) in L”(D) for some p = 1. Here w; € N; run through
subsets of N, such that the products w,w, are well defined. We say that the pair {L,,
L,} has property C with constraints if the set {w,w,}, where w; € N,,,, j = 1,2, is total in
L’(D). 1t is proved that if L, and L, have constant coefficients and the pair {L,, L,} has
property C then it has property C with constraints.
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1. Introduction. The author introduced
property C for pairs {L,, L,} of linear partial
differential expressions in [1] and has found
many applications ‘of this property [2]. In [3] he
introduced property C with constraints and
found several applications of this concept to in-
verse spectral problem, inverse boundary prob-
lem and inverse scattering problem.

In [2] necessary and sufficient conditions for
property C to hold for a pair of linear partial
differential expressions (formal differential oper-
ators) with constant coefficients are found.

The basic result of this paper is the follow-
ing theorem.

Theorem 1.1. If {L,, L,} are linear formal
partial differential operators in R”", n = 3, with
constant coefficients and property C holds for the
pair {L,, L,}, then property C with constraints
holds for this paar.

In section 2 we define property C and prop-
erty C with constraints and recall some results
from [2].

In section 3 we prove Theorem 1.1.

2. Basic definitions and known results.

2.1 Let Lu@ =2, @n®0 ul),
m=122x€R",n>2,5 is a multi-index,
a,,,(r) are givjen functions, J,, > 0 is an integer,

0'u ) . .
6’u-=m,l1+ s gi= 14l we
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call L,, a linear formal differential operator.

Let D R" be a bounded domain, N,,:=
{w:L,w=0 in D}, f€L’(D),p=1 The
equation L, w = 0 is understood in distributional
sense. Assume that

(2.1) ffwlwzdx =0, w, €N,
D

for all w, € N,, for which w,w, € L” (D), p’ =
b
p— 1
Definition 2.1. If (2.1) implies that f = 0,
then we say that the pair {L,, L,} has property C.
Remark 2.1. The name “property C” comes
from “completeness of the set of products {w,w,} [2].
We give now a necessary and sufficient con-
dition for a pair {L,, L,} of operators with con-
stant coefficients, a,,(r) = a,, = const, to have

property C.
Define
22 ¢, ={z:2z€ C", L,() =0},
L= 3 a,z.
I <Tpm

Let T,,(z,) be the tangent space in C” to the
algebraic variety &, at the point z,.

Theorem 2.1. ([2,p.44]). For a pair {L,, L,}
to have property C it is necessary and sufficient that
there exist two points z,, € L,,, such that the tan-
gent spaces T,,(z,,), m = 1,2, are transversal.

Remark 2.2. Geometrically this means that
the variety €, U ¥, is not a union of parallel hyper-
planes in C”.

2.2. We now define property C with con-
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straints. Let N,, ;o) be a linear subspace in N,
of finite condimension MQOm) < © |, m = 1,2.
Assume that (2.1) holds for all w, € N, yum
such that w,w, € L (D).

Definition 2.2. If, under the above assump-
tion, equation (2.1) implies f = 0, then we say that
the pair {L,, L,} has property C with constraints.

In what follows we assume that L, have
constant coefficients. Let z-x := X]_, z,x;.

Remark 2.3. The function exp(z:-x) € N,,
ffz€ ¥,

3. Proof of Theorem 1.1. Assume that the
pair {L,, L,} has property C, that is:

(3.1) {O = j;f(x)wlwzdx Vuw, € Nm} = f=0.

We want to prove that (3.1) implies that the pair
{L,, L,} has property C with constraints, that is:

@2 (o= [r@wuwdz Vu, € Ny

= f=0.

Take w,, = exp(z,, " 2), 2,, € £,,, m = 1,2.

Let g,,(z,) be a smooth function on £, decaying

faster than exp(c|z,[) for any ¢> 0, and
0,.(z,) be a finite measure on ¥,,. The function

(33) w,@ = [ do,(e)exp(e, Dgn(z,)
fm

belongs to N,, ) Provided that

(3.4) 0= ff 40,8, (z) H,y(2,), 1 < k < M(m);

H,, (z,) = {exp(z, * 2), h,,>, m = 1,2.
Here we took into account the constraints: w,, €
N, vuom implies <w,, h,,> = 0,1 <k < M(m),
where {w,,, h,,” is a linear functional on N,,. If
w,, are defined in (3.3), then quation (3.2) becom-
es

(3.5) 0= J; do,(z) g,(z) _j; do,(2,) g,(2,)

F(z, +2); Flx) := def(x)exp(zw),

where g, satisfy (3.4).

We want to derive from (3.5) that F(z) = 0.
This would imply f(z) = 0. It follows from (3.5)
and (3.4) that

MQ1)
(3.6) L dosg () Flay + 2) = 3 ¢, Hy (2,

where ¢, are some constants, £,(2,) satisfies (3.4)
with m = 2, and otherwise g, is arbitrary.

Therefore, one can choose J > M(1) linearly
independent functions ¢;(z,) and some numbers
d;, 1 <j < ], such that
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(3.7) ff 2,(z) Hy, (2)do,(z) =0, 1 < £ < M(2),
where

(3.8) 2,(z) = éd,goj(zz).

We claim that, for any integer J, one can choose
¢,(2,) such that the functions

(3.9) L do,(2,) 0;(2,) F(z, + z,) = w,(z),

1<;<]7,
are linearly independent. If this is done, then
(3.6) leads to a contradiction, unless F(z) = 0,
or, which is the same, unless f(x) = 0. Indeed,
the left-hand side of (3.6) is a linear span of J >
M(1) linearly independent functions by the
claim, while the right-hand side of (3.6) is
obviously a linear span of M(1) < J linearly in-
dependent functions. These linear spaces are
identical by (3.6), which contradicts the fact that
they have different dimensions. This contradic-
tion proves Theorem 1.1. To complete the proof,
let us verify the above claim. Let J > 0 be an
arbitrary integer, f(x) € L’ (D), p=1,Dc R"

is a bounded domain, F(z) := ff(x)exp(z'x)dx,
D

2,.(z) = j;) do,w,(z,)F(z, + 2,), z,€ %, m

=1,2.

Lemma 3.1. If {L,, L,} has property C and
f # O, then there exist ] functions w,(z,) such that
the functions {2,(2)},<,<, are linearly indepen-
dent.

Proof. We want to prove that dim R(T) =

oo where 2(z) = Tw:= '/;) Fz, + z)w(z)

do,(z,) and R(T) = range of T.

Take w;=0d(z,—2)),1<j<], 2’ ¢€
%,, ] is an arbitrary large fixed integer, and
3(z, — z,) is the delta-function. Then

Q= j;dxf(x) exp(z, c xz+ 2z, - ).

Let z,, € ¥,, be such that the tangent spaces T,
to £, at zf,, are transversal, m = 1,2. Let {e;,* " -,
¢,_,} be an orthonormal basis in 7 and, since by
the assumption 7 is transversal to T, there is a
vector f; in the basis of T,, such that (f;, e,)
# 0. Without loss of generality (and for simplic-
ity) one can assume that f; = e,, (e, ¢;) = 0,;, 1
<4, £ < n (the inner product is taken in C” but
the vectors e, are real-valued: they form a basis
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of R"). Fix an arbitrary number {, and find ¢,

1<k<n-—1,1<j <] such that
n-1 ) .,

2 =X e+ e, €4, 0 # L dorj# 5
K=

Index k£ denotes the coordinate component and j
denotes the number of the chosen point.

One can choose {, independently of j: the
variety ¥, is defined by the equation L,({) = 0

L
and G_Cz # 0 on ¥, since T, and T are transver-
" 0
sal. In a neighborhood of the points where 6_C2
n

# 0 one can write the equation of ¥, as {, =
o), {':= (&, -, ). Thus, for a fixed {,,
one can find, in general, infinitely many points {’
such that ({’, {,) € ¥, provided that n = 3.
Fix J such points.

Suppose that {, is so chosen that the func-

tion h(x’, {,) 1= fbf(x’, z,)exp(il,x,) dz, #* 0.

Here ' = (x,,..., x,_,), and [a, b] is a finite
interval since D is a bounded domain. Clearly
there exists an open set of the numbers {, such
that 2(zx’, {,) # 0. Indeed, 2(x’, {,) is an entire
function of {, which cannot vanish on open sets
of the {,-axis unless f(z’, x,) =0, and we
assumed that f(x) # 0. With the above choice of
¢?,1<;j<]J and C,, one has

(3.10)

Q1=def(x’, xn)exp(cnxn)exp[(zl_'_ CU))'.Z',]
—3 L, dx’h(x/’ Cn)exp[(zl,_'_ C(j)) . J,’,]

where z, € ¢, is arbitrary, {7 + C.e, € ¥,, and
D’ is the (parallel to e,) projection of D onto
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R"™'. Without loss of generality one may assume
that D is a cylinder D’ X [a, b]. In a neighbor-
hood N (z,) of 2 the points z, € €, are very
close to 7}. The function £; is an entire function
of the variable z;. This variable runs through an
open set in C"”' when 2z, runs through N (z)).
Thus, if

J
(3.11) 0= X ¢
j=1

:=J;, dx’'h(x’, ¢,) ,é ¢c; exp(((”)-x)exp(z 2",
Yz, € N(2), then

(3.12) bz, L) = c,exp({P)-x) =0 vz
Since a(x’, C,) $j=(3 it follows that

(3.13) é ¢; exp((V-z) =0 vz

j=1
Since CU) # C(i) for j # 1, equation (3.13) implies
¢;=0,1<j7<] Therefore the set {Tw;}, 1
< j < ], is linearly independent. Since J > 0 is
arbitrary, this means that dim R(7T) = oo . Lem-
ma 3.1 is proved. O
Therefore Theorem 1.1 is proved. ]
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