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Minor Summation Formula of Pfaffians and Schur Function ldentities
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1. Introduction. In the paper [1], we ex-
ploited a minor summation formula of Pfaffians.
The prototype of this formula is found in [6]. The
merit of our formula is that, by taking various
antisymmetric matrices, we obtain considerably
various formulas on the summations of minors of
a given rectangular matrix. Our motivation was
in the use of the enumerative combinatorics and
combinatorial representation theory. (See [9].) We
are expecting the utility of this formula on va-
rious objects in this area. Particularly we think
that the applications on the Schur function identi-
ties are important and we studied them intensive-
ly in [2]. There we obtained new proof of the for-
mulas which are usually called Littlewood’s for-
mulas. Typical examples of Littlewood’s formulas

are the followings.
2]

(1.1) 2 (=17 s(x,...,x,)
A=(ala+1)
= I Q-xx),
1<i<j<m
1l
(1.2) S (=105, .., x,)
A=(ala)
=DIAQ—-z) 0T Q-zxz),
i=1 1<i<js<m
1l
(1.3) > (=17 s(x,...,x,)
A=(a+1la)
= I Q-xx).
1<i<j<m

(See [4].) For the notation see Section 2. In this
paper we state some new results which are
obtained after [2]. The method we use owes to [2],
but we develop the method and exploit certain
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new identities which involve both the Schur func-
tions and Cebysev’s polynomials. The main re-
sults of this paper are Theorems 3.1, 3.2 and
3.3. In the process of deriving these identities,
the argument on the relation between (Sato’s)
Maya diagram and Murnaghan-Nakayama's for-
mula on Young diagram has a crucial role.

2. Basic notation and a summation formula.
In the paper [1] we exploited a minor summation
formula of Pfaffians. Now we briefly review this
formula.

Let », m, n be positive integers such that
¥ < m, n. Let T be an arbitrary m by # matrix.
For two sequences i= (i, ,i,) and k=
(ky,..., k), let Ty =T, denote the sub-
matrix of T obtained by picking up the rows and
columns indexed by I and k, respectively.

Assume m < n and let B be an arbitrary »
by # antisymmetric matrix, that is, B =
(b)) satisfies b;,; = — b;;. As long as B is a
square antisymmetric matrix, we write B, =
B, ., for B: = B::;‘,’;: in abbreviation. One of the
main result in [1] is the following theorem. (See
Theorem 1 of [1].)

Theorem 2.1. Let m < n and T = (¢;,) be
an arbitrary m by n matrix. Let m be even and B =
(b;) be any n by n antisymmetric matrix with en-
tries b;,. Then

(2.1) pi(By, ) det(Te ) = pf(Q),
1<k <eve<kpy<n

where Q 1is the m by m antisymmelric matrix de-
fined by @ = TB'T, i.e. )
2.2) Q= X b,det(T,

1<k<IZn
We regard the Pfaffian pf(B,) as certain

“weights” of the subdeterminants det(Tkll':ﬁm). By
changing this antisymmetric matrix we obtain a
considerably wide variation of the minor summa-
tion formula.

Now we review some basic notation. The
reader can find these notation in [5]. A weakly
decreasing sequence of nonnegative integers A 1=
Ay, *++, Ay with A, = +-+ = 2, =0 is called
a partitionof | A| = A, + - -+ + A,,. The partition

A<, 75 m).
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A=}, A, ...) defined by ;= #{j:4, =1}
is called the conjugate partition of A. Let
nA) =2,5,G— DA, = Z,5, ¢). For each cell
x = (i,7) in A, the hook-length of A at x is de-
fined to be A(x) = A; —j+ A; — ¢ + 1. Suppose
that the main diagonal of A consists of =
p(A) nodes. Let @, = A, — ¢ and B, = A, — i for
1 < i <7 We sometimes denote the partition A
by A= (a,,..., a,| B4, ..., 8,) = (a| B), which
is called the Frobenius notation. If @ is a non-
negative integer which doesn’t coincide with any
of a;’s, then let ¢(a, @) denote the number of ;’s
which are bigger than a. For example, A =
(5441) is the partition of 14 and p(1) = 3. This
partition is denoted by A = (421|310) in the
Frobenius notation. If &« = (310) then ¢(a, 2) =
1and (@ +1|a) = (421]310).

Let A= (a,,..., a,| B ..., B,) be a parti-
tion expressed in the Frobenius notation. Let a
and b be nonnegative integers such that a # a,
...,a,and b#* f,,..., B, There are some k
and [/ such that o, > a> a,,, and 5, > b >
B,+1. The partition 2 U (a| b) is defined by
(23) AV (a|lb) =

(@,...,0,a 0y, ..,
Blr'-'nBlranHl’---!nBr)'
For example, (421]310) U (0]2) = (4210]3210).

The Schur functions are well-known sym-
metric functions, which are known as the values
of characters of the irreducible polynomial repre-
sentations of the general linear group on a torus.
But, here, we briefly review the definition of the
Schur functions. Put

xln_l cee xl 1
(2.4) T= : ek o,
x‘:,_l ooz, 1
for some fixed #. For a partition 2 := (1, - - -,

A, let 1= (,...,1,) = A+ 3, where d = (m
—1,m—2,...,0). So we have [, > [, > ---
>1,=20 Putj,=mn—1I, for 1 £k < m. Then
we set a,(xy,...,Z,) = ay,(x,...,x,) to be
(2.5) apys = det (T,
When A = 0, a; is the famous Vandermonde de-
terminant and equal to the product IT, ;. ;<. (x;
— ).

For a partition A = (1,,..., 4,,), the Schur
function s, = s, (z,,. .., x,) corresponding to A
is defined to be

(2.6) S, = G5/ as.
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(See Chap. 1, Sec. 3 of [5].)

The polynomials defined by T,(x) = cos(n
arccos x) are called Cebyéev's polynomials of the
first kind, and, on the other hand, the polyno-
mials U,(x) = sin(n arccos x)/y/1 — x* are cal-
led Cebysev’s polynomials of the second kind.
Both are known to satisfy the same recurrence
formula:

P,.,(x) —2zxP,(x) + P,_,(x) = 0.
The first few polynomials are easily calculated
from the following recursion formula.

T,(x) =1, U,(@») =0,
{T,M(x) = zT,(x) + (* — DU, ()
Uyy(x) = T,(») +2U,(2).

3. Littlewood type formulas. The following
lemma is the key lemma to evaluate the pfaffian
we treat.

Lemma 3.1. Let m be a positive integer and

put . 2
31 Qulz, ) = —F— 1 — txy
Then

(3.2) pflQ, (x;, x)1 < j<om

= II
1<i<ji<2m
We fix T = (‘r:m+d_2_j)lSiSZm,OSJ'S4m+d—2 in
this section. We assume d = 2 for a moment. Let
B = (B,) be an antisymmetric matrix defined
through the equation below.

(r, — ) A — trx).

k 1
' x
(3.3) 2 Bu . ,i
0<k<I<Z<4m ] Y
_ 2 2 (@™ — ym)z
=—1+2ar+<x )(1+Zay+y)7y——,

If we apply Theorem 2.1 to @ given by the right

hand side of this equation, then we obtain the fol-

lowing formula from Lemma 3.1 with £ = 0.
Proposition 3.1. Let m be a positive integer.

m m—k
(3.4) kgo Uk+1(a) §) S(Zilk)(xl, oo ey .Z‘m)

=11 (1 + 2ax, + x)).

i=1
If we put x; = ¢” in this formula and put
m — o then we obtain a (combinatorial) proof of
the g-expansion formula of Jacobi theta functions
9, and 9,, for example,
—9 3 n (n+3)?
(3.5) ,(u, ) =22 (—1)"¢\""% sin@n+ 1)7u

n=0

= onq% sinzu II (1 — 2¢” cos 2mu + ¢'),
) n=1
where ¢ = €™ (Im7 > 0) and Q,=IT_, 1 — ¢™).
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Let m be a positive integer and let B =
(BeDo<ri<m—1 be an antisymmetric matrix of size
m in the ordinary means. Set b; to be the
i-th row vector of B for 0 < i< m — 1. The
matrix B is said to be (row-)symmetrically prop-
ortional if the (m — 1 — k)-th row is proportion-
al to the k-th. That is to say, there is some ¢,
such that b,_,_, = ¢b, or b,=c¢b,_,_, for

each 0k < [—’g—] — 1. Further B is called

row-symmetric if the b,_,_, =b, for 0=

< [Zg—] — 1, and B is called row-antisymmetric if
m+ 1

the b, ,,=—b, for 0<k<[" 2] -1

This notion has importance since it makes us
possible to find all the subpfaffians pf(B, _; ) of
B. From now on we assume that B is always
supposed to be antisymmetric matrix in the
ordinary means.

Let P(x) =ay+ ax+ - -
polynomial of degree d. P(x)

-+a,,xd be a
is said to be

symmetric if a,=a,_; for 0 <1< [5] , and
P(x) is said to be antisymmetric if a, = — a,

+
for0 << [—d——z—l] Then we have

Lemma 3.2. Let P(x) be a polynomial of de-
gree d. Let B = (B,)o<y1<mra-z be the antisym-
metric matrix of size (dm + d —kl) Euhich satisfy
(3.6) = Bal® %

0<k<I<4m+d-2 Y Y

= — PPy, (x, y.
The wmatrix B becomes (row-)symmetrically prop-
ortional for all m if and only if P(x) is symmetric
or antisymmetric. Further, if the polynomial P(x) is
symmelric then B becomes row-symmetric, on the
other hand, if P(x) is antisymmetric then B becom-
es row-antisymmetric.

From now we apply Theorem 2.1 to this T
and B given by (3.6). Basically it is possible to
find some sort of formula for each antisymmetric
matrix B of the form (3.6) if it is row-symmetric
or row-antisymmetric. Here we investigate each
formula for small d. When d = 0, we obtain the
formula (1.1) from this argument. If d = 1 and
P(x) is antisymmetric, we obtain the formula
(1.2). It is easy to see that the case of d = 1 and
P(x) being symmetric reduces to this case. If
d = 2 and P(x) is antisymmetric, then we obtain
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the formula (1.3). These are the known Little-
wood type formulas. If we assume d = 2 and
P(x) is symmetric, then we obtain the following
theorem.

Theorem 3.1. Let m be a positive integer.

Then
120
T D% (x,...,x,)
i=(a+lla)
z 121 _
(3{7) + 2 Z Tk(a) Z (_ 1) 3 +q(2,k—=1)
k=1 i=(a+1la)
adk—1
X S100lk=1 E1s e vy Tpy)
m
=0 A+2aer,+z) O A-—zxx).
i=1 1<i<j<m

If we put x; = q in this formula and we
use the g-expansion formula of Jacobi theta func-
tion 95, we obtain the following corollary.

Corollary 3.1.

s (= l)J—L+pu> ALy n o 1 —

A=(a+1la) rex ]l — q

(3.8) . ~ [%]
I-Ir=2(]' — q ) 2
m_,Q—q")
Let m be a nonnegative integer. Then

(3.9) s (= 1)‘—él-+q(a,m)q|—éj-+n(xu(0|m))

A=(a+1la) - ~ [z
o 1 S n,a — ¢) 3l

zeavolm 1 — q"(x’ I, a- q)

If d=3 and P(x) is antisymmetric, we
obtain the following theorem. The case of d = 3
and P(x) being symmetric essentialy reduces to
this case.

Theorem 3.2. Let m be a positive integer.

Then
Al=pQ)
> (_ 1) 2 31(1'1“-” J,‘m)
i=(a+2|a)
(3.10) + 21T, (@ + (a— DU, (@}
k=1
x 3 (= I)M—H](lk -
A=(a+2]a)
ask—1
X {Sw(olk—n @, ..., T — Swap-n @, o, z,)}
m m
=0QA+2az,+x) T A—2) O A—zz).
i=1 i=1 1<i<i<m

If d=4 and P(x) is antisymmetric, we
obtain the following theorem.

Theorem 3.3. Let m be a positive integer.
Then

(3.11) 2 (=D

i=(a+3la)

Llirm

s;(xy,. .., x,)

m 121 -
+ X U@ = (—1)yzrY
k=1 A=(a+3la)
a¥k-1
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X {sw(olk—l)(xv cer Z) — Spuie-n Eis e Ty

m
=M Q+2ax,+z) 1
i=1 1<i<ji<m
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