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1. Introduction. Let K be an algebraic

number field such that [K:Q] < c, and K(s) be
the Dedekind zeta function of K. The completed

Dedekind zeta function ’(s) K(s)" F(s) has

the symmetric functional equation" (1- s)-

’(s). Here, the gamma factor is"
s

rl (K) (K),
where, D is the discriminant of K, rl(K)and
r(K) are the number of real and complex places

$

of K respectively. We can consider Fl(S) --F(-), Fc(s)- Fi(S)Fl(S + 1)as a "basis" of

gamma factors corresponding to infinite places.
In this article we consider "gamma factors"

for Selberg" zeta functions. (cf. Vigneras[6], Sarnak
[5], Kurokawa[3]). We give a neat expression of
"gamma factors" as in the case of Dedekind zeta
functions. (Theorem 1) Furthermore, we obtain a
simple proof of the functional equation of the
Ruelle zeta function R(s) for a compact 2n-
dimensional real hyperbolic space X (Theorem 2):

R(s) "R(-- s) (-- 4 sin(rs))’<-)"-’x).
The author would like to express his pro-

found gratitude to Professor N. Kurokawa for his
valuable suggestions and encouragement.

2. Selberg zeta functions. Let G be a con-
nected semisimple Lie group of rank one with fi-
nite conter, K be a maximal compact subgroup of
G. Let F be a co-compact torsion-free discrete
subgroup of G. Then X F\ G/K is a compact
locally symmetric space of rank one. For a given

irreducible unitary representation v of K, we de-
note by Z(s)the Selberg zeta functions of X
with K-type v as is introduced by Wakayama [7].

For example, let X be a compact Riemann
surface of genus g >_ 2. Then X F\H where
H SL(2, R)/SO(2)is the upper half plane,
and F is the fundamental group rl(X) discretely
embedded in SL(2, R). For trivial v, the Selberg
zeta function Z(s) of a compact Riemann surface
is defined by the following Euler products:

Z(s) II H (1 N(p)-<+s)).
pp[, k=O

Here Pr is the set of all primitive hyperbolic con-
jugacy classes, and the norm function N(p):
max{I eigenvalues of p 12}. For other rank one Lie
groups and non-trivial v, Zr(s)is defined by
similar but more complicated Euler products.

Selberg-Gangolli[2]-Wakayama[7] have shown
that:
Z(s) is meromorphic on C, and tells informa-
tions about v-spectrum:

> 0,
where mr() is the multiplicity of a unitary rep-
resentation of G in the right regular repre-
sentation r of G on L(F G). (and in our case

mr() is finite for all .)
Zr(s) has moreover the functional equation:

(;s_oo 0(1) Z(2p0- s) exp A(t)d Z(s).

where, Po > 0 is a constant depending only
on G and Ar(t) is the "Plancherel" density with
K-type v, whose explicit formula is found in [7].
Hereafter we use renormalized P0 and A(t) like
as [4].

3. Gamma factors, we shall express the
exponential factor of the functional equation (1)
as F(s)/F(2po s)by the "gamma factor"
F(s) so that the completed Selberg zeta function

(s) Z(s)Fr(s) will satisfy the symmetric
functional equation:
2)  (2po s)

If dim X is odd, the "Placherel" density
Ar(t) is a polynomial and "gamma factor" is tri-
vial. Hereafter we suppose that dim X is even, i.e.
G SO(2n, 1), SU(n, 1), Sp(n, 1), F4. Then
the "Plancherel" density is given by A(t)=
finite sun (odd polynomial)(tan(t)).

Definition 3.1. We define two "Plancherel
polynomials" P(t) and Q(t) attached to v by,

dm X/2(- 1) vol(-’A(t)
--P(t) cot(t) + Q(t)tan(t).

These polynomials are odd polynomials of degree
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(dimX--1), whose leading coefficients are posi-
tive.

Theorem 1. (a) Let X-- F\ G /K be an even
dimensional compact locally symmetric space of rank
one. For z" if, the gamma factor Fr(s) for Zr(s)
is expressed as follows"

dim X/2

F,(s)-- II F(O,l)(S) (-1)’-’P*<dimx/2-’+l)

/=1

dim X/2
)l_lQ +1/2)X H F(1,1 (S)(-1 (dim X/2-1

1=1

Here, F(o,)(S) and F(1,> (s) are "bases" of gam-
ma factors and independent of the representation v.
Let c( ( 1) aim x/e-vol(, then these bases
are described by the multiple gamma function of
order dim X
F,o,, (s)

k=-(l-1) 2 k l--lkl--

and

F(’n(s)- [o-(Fmx(S--P dimX2 k--

FdimX(S__O0 dimX ))(--1)*(dimX)] c(X,

2 F k+ l-k-1

(b) F,(s) is depending only on "Plancherel
polynomials" P:(t) and Q,(t). For v, v" K,

;,(s) , (s)

P,(l) P,,(1)and O,(1- ) Or,(l- )
(l 1,..., dim X/2)
P,(t) P,,(t) and Vr(0 Vr,(0
dim v dim v’
Remarks. (1) F(z) is the multiple gamma

function as in Kurokawa [1: F(z)= exp

(s, ) Iso), and (s, z) .,..., o( + +
+ z)-s is the multiple Hurwitz zeta function.

This normalized multiple gamma function
F(z) has many properties similar to the usual
gamma function F(). For example, F()-
(2)- F(z), Fo(z) 1/z, F(z + 1) F_(z)-.
F(z). etc.
(2) F(s)for trivial r have been obtained by
Kurokawa [4]. Concerning non-trivial r, only the
case G SL(2, N) has hitherto considered
(Sarnak[51).
() "Bases" have a representation-theoretic mea-
ning. Let us consider the case of a S0(2, 1).

F((s) is the gamma factor for Z((s). The re-

resentation v(l) satisfies the following:
Rep(M) - Z[v(1),..., v(n)].

(See the section of Ruelle zeta functions for nota-
tions.) i.e. There is a correspondence between our
bases of gamma factors and the basis of Rep(M).

4. Proofs. Let us introduce some polyno-
mials which play key role to prove (a) of
Theorem 1.

Proposition 4.1. For two odd polynomials- t2 ") - (tP, (t) t H= ( and Q, (t) t H=

expj P,(0 cot(0d F,(s Oo + k)
and

exp (0 tan (t) d

1 1

1 1

Proof Define the multiple sine function

Sr(z) Fr(Z)-IFr(r- z)<-)’, and use the dif-
ferential equation of Sr(z) [3]:

S (z) (--1)r-I( z- 1)Sr r 1
;r cot(;rz).

Next we apply the following lemma, and
obtain theorem after some combinatorial ca]cu]a-

tions.
Lemma 4.2. For v K, P(t) and Q(t) are

expressed uniquely as Q-linear combination of above
polynomials"

dim X/2

P(t) ak(v)Pk(t),
k=l

dim X/2

Q(t) b (v) Q (t)
k=l

with a (v) b, (v) Q.
Proof. t2-1 is uniquely expressed by P(t)’s

(resp. Q (t) s). For example t P (t) t
1

P2 (t) + P (t). etc. t Q (t), t Q2 (t) + - Q(t).

etc. And the lemma follows from the fact that
Pr(t) and Qr(t) are both odd polynomials. [-]

To prove (b) of the theorem, the following
lemma is fundamental"

Lemma 4.3. Let fr(Z) IIzFr(z + k) a*

for a sequence of rational numbers {a,},z. Then,

fr(Z) 1 V a O.
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Proof fr(z)/fr(Z + 1) fr-l (z) holds by
using a property of multiple gamma functions.
Therefore, fr(Z) 1 implies fr_(z) 1. We
must prove the case r 0, but this is trivial be-
cause Fo (z) 1/z. [--]

5. Functional equation of the Ruelle zeta
function. Let us consider the case of G
SO(2n, 1). The Ruelle zeta function R(s) of X is
defined for Re(s) > 2n- I by

R(s) g (1- N(p)-s),
PPF

where Pr is the set of all primitive hyperbolic
conjugacy classes of F-- 7q(X) the fundamental
group discretely embedded in G, and N(p) is the
norm function. Fried [1] shows that R(s) can be
written as a product of generalized Selberg zeta
functions"

2n

R(s) II
/=1 and

v(l) M--+ /k - (C2n-) standard representations.
where M is the centralizer of A in K under the
Iwasawa decomposition G- KAN. In our case,
K-- SO(2n) and M= SO(2n-- 1). We know
that the gamma factor of Z()(s) is F,()(s)=

1
F(.)(s) from Theorem 1, Po n--- and dim X

2n
Fv,, (s)

[20 l--k--1

Theorem 2. Let X F\ SO(2n, 1)/SO(2n)
be a compact real hyperbolic space. Then the Ruelle [1]

zeta function R(z) ofX has the following functional
equation"
(3) R(z) "R(-- z) (-- 4 sin2(zrz)) "’(x). [2]

Here, c(X) (-- 1)"-vol(X).
Proof R (z) R (-- z) [3]

Zv(l)(Z+ l-1) Zv(l)(-z+ l-1)] (-1)-

’=1I Zv,, (_ z 4i- 2n l) Zv(,)(z + 2n l)
-1 [41

=Y= [o- (S2,(z+l--k-l)
(--1)l-l.c (X)

S., (z + l + k)) (-)( " )]l--k--1 [5

X fi [r-I
l=1 "k-O-

(--1)l-l.c(X)

S,,( z + + k)) (-1)( 2n )]l--k--1

2n-1 [71
II ( S2n (Z + j ) S2n (-- z -J[- j) ) a(j)’c(X)
j=O

(- 1)(n j)("7) + (- 1)-’b(j)
(- 1)-lb(j)

...j-0 n

"’j= n + 1 ,2n- 1

b(j) E (2n)=b(2n--j)
+1 2l j 1

< < min (n,/,)

-1

II (S2n(z + j)S2u(-- Z + j))(a(i)-a(2n-i)).c(x)
--1

II (S2n(Z t_ j)S2n(__ z + j)) (-i)’(n-y)(2n)’c(X)
j=O

(SI(s).SI (- z))
(-- 4 sin (7cz)) .c(x). Q.E.D. [-1
Remarks. We have used the known prop-

erties of multiple sine functions such as following
in above calculations.

S (Z) F1(Z)-lF1(1 z)-1

[(27r)-F(z) (2r)-F(1 z)]-I
2 sin (z).

and
Sz. (a)" S.. (2n a) 1,

S (z) "S (- z)
2n-1

II (S2n(Z -I-- j)S2.(-- Z -t’- j))(-1)’(2n-1),
i=0

t-1

1-I (S2n(Z+j)S2n( z+j)){(--1)’(2n--1) -(-1) (2n--l)}2n--j

j=0

n--1

lI (Sn(Z + j)Sn(- z + j)) (-1)’(n-j)(2n)-d---"
j=O
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