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1. Introduction. Let K be an algebraic
number field such that [K : Q] < o0, and {,(s) be
the Dedekind zeta function of K. The completed

Dedekind zeta function z;(s) = {(s) - I'y(s) has
the symmetric functional equation: @(1 —s) =
E;(s). Here, the gamma factor is:
S
Iy(s) = | Dg P ()" 'L ()™,

where, Dy is the discriminant of K, 7,(K) and
VZ(K) are the number of real and complex places
of K respectively. We can consider I'g(s) = n_%
[(3). Te(® = Tg() (s + 1) as a “basis” of
gamma factors corresponding to infinite places.

In this article we consider “gamma factors”
for Selberg zeta functions. (cf. Vignéras[6], Sarnak
[5], Kurokawa|3]). We give a neat expression of
“gamma factors” as in the case of Dedekind zeta
functions. (Theorem 1) Furthermore, we obtain a
simple proof of the functional equation of the
Ruelle zeta function R(s) for a compact 2#-
dimensional real hyperbolic space X (Theorem 2):

R(s) 'R(— S) — (_ 4 Sinz(ﬂs))n-(—v"-lvol(m.
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2. Selberg zeta functions. Let G be a con-
nected semisimple Lie group of rank one with fi-
nite conter, K be a maximal compact subgroup of
G. Let I' be a co-compact torsion-free discrete
subgroup of G. Then X = '\ G/K is a compact
locally symmetric space of rank one. For a given
irreducible unitary representation 7 of K, we de-
note by Z.(s) the Selberg zeta functions of X
with K-type 7 as is introduced by Wakayama [7].

For example, let X be a compact Riemann
surface of genus g = 2. Then X = I'\ H where
H = SL(2, R)/SO(2) is the upper half plane,
and I is the fundamental group m,(X) discretely
embedded in SL(2, R). For trivial 7, the Selberg
zeta function Z(s) of a compact Riemann surface
is defined by the following Euler products:

Z(s)= 1 I 01— N,
pepr k=0

Here P, is the set of all primitive hyperbolic con-
jugacy classes, and the norm function N(p) =
max{| eigenvalues of p lz}. For other rank one Lie
groups and non-trivial 7, Z,(s) is defined by
similar but more complicated Euler products.

Selberg-Gangolli[2]-Wakayama|7] have shown
that:
Z.(s) is meromorphic on C, and tells informa-
tions about 7-spectrum:

G,={reGlmn) >0, |2 o},
where m(7) is the multiplicity of a unitary rep-
resentation 7 of G in the right regular repre-
sentation 7, of G on L*(I'\ G). (and in our case
mp(7) is finite for all 7.)

Z.(s) has moreover the functional equation:

(1) Z,2p,— s) = exp(jjwo Af(t)dt>Z,(s).

where, p, > 0 is a constant depending only
on G and A4,(#) is the “Plancherel” density with
K-type 7, whose explicit formula is found in [7].
Hereafter we use renormalized o, and 4,(¢) like
as [4].

3. Gamma factors. we shall express the
exponential factor of the functional equation (1)
as I.(s)/I',(20, — s) by the “gamma factor”
I',(s) so that the completed Selberg zeta function

Z.(s) = Z.(s)T.(s) will satisfy the symmetric
functional equalt\ion: .
(2) Z.2p,— s) = Z.(s)

If dim X is odd, the “Plancherel” density
A, () is a polynomial and “gamma factor” is tri-
vial. Hereafter we suppose that dim X is even, i.e.
G=S02@n, 1), SUMn, 1), Sp(n,1), F,,  Then
the “Plancherel” density is given by A4.(f) =
> tinite sun (0dd polynomial) 7 (tan (zr2)) *'.

Definition 3.1. We define two “Plancherel
polynomials” P.(8) and Q.(f) attached to T by,

(— D™ 901074, =

— P, (O cot(xt) + Q. (D tan(rt).

These polynomials are odd polynomials of degree
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(dim X — 1), whose leading coefficients ave posi-
tive.

Theorem 1. (a) Let X = I'\ G/K be an even
dimensional compact locally symmetric space of rank
one. For € K, the gamma factor I'.(s) for Z.(s)
1s expressed as follows:

dim X /2
(=1!-1p (dim X /2—1+1)
I(s)= I Ty, i
=1

dim X /2 - . 1

(=1)'71Q, (dim X /2—1+3)
X II Iyy(s) : 2.
=1

Here, I'y,,(s) and Iy, (s) are “bases” of gam-
ma factors and independent of the representation T.
Let ¢(X) = (— D)™ *? ' 9ol(X), then these bases
are descvibed by the wmultiple gamma function of
order dim X :
Lo p(s) =
-1 du-nX _ gk dim X c(X)
II qunx<S—Po+T+k>( 1)(1_|k|_1)] ’
k=—(0-1)
and
-1 dim X 1
Fop® = [T (T x(s — 0o+ S5 — k= 3)
k=0
dlmX dim X )] c(X)

Liim X(s — 0ot 5 + k+ %))(—l)k(l—k—l

(b) TI,(s) is depending only on “Plgncherel
polynomials” P () and Q.(). For , v’ € K,
I'.(s) =1TI,(s)
1

S P.() =P.() and Q,(l — %) - Qf,(; — _.>

2
(=1,...,dim X/2)
SP.(t) =P, and Q,(H = Q. (¥
= dim 7 = dim 7’
Remarks. (1) I,(2) is the multiple gamma

0
function as in Kurokawa [3]: I,(2) = exp(a
¢, (s, 2 |s=0>, and {,(s,2 =2, ... .ol + -+

n, + 2)7° is the multiple Hurwitz zeta function.
This normalized multiple gamma function
I',(z2) has many properties similar to the usual
gamma function I'(z). For example, I;(z) =
@m I, @) =1/2, T+ 1) =TI, )~ -
I,(2). etc.

(2) I',(s) for trivial 7 have been obtained by
Kurokawa [4]. Concerning non-trivial 7, only the
case G = SL(2, R) has hitherto considered
(Sarnak[5]).

(3) “Bases” have a representation-theoretic mea-
ning. Let us consider the case of G = SO(@2#n, 1).
L (s) = Ty (s).

I, (s) is the gamma factor for Z,,,(s). The rep-
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resentation v(l) € M satisfies the following:
Rep(M) = Z[v(Q),..., v(n)].

(See the section of Ruelle zeta functions for nota-

tions.) i.e. There is a correspondence between our

bases of gamma factors and the basis of Rep(M).
4. Proofs. Let us introduce some polyno-

mials which play key role to prove (a) of

Theorem 1.

Proposition 4.1. For two odd polynomials

P = tTUNE — ) ana Q0 = +T2(# —

(-3)) ke
S=—0,

’

I’Zk(po —s + k) ] —@k-D)!

exp( A oP,,(L‘)rr cot(n:t)dt) = [ I,G—p, 50

and

exp(j:s—po Q.Mm tan(nt)dt) =

1 1
I‘Zk(po—s—f-l—k) L,(0,—s+++k

2 @2k—1)!
2
I e
Iu(s—0, =51tk Iyis—py+5+h
Proof. Define the multiple sine function

S,(2) =@ 'I(r— 2", and use the dif-
ferential equation of S,(2) [3]:

S; — (_ 12— 1
s @=0 (20

) m cot(mz).
O

Next we apply the following lemma, and
obtain theorem after some combinatorial calcula-
tions.

Lemma 4.2. For r € K, P.(t) and Q,(t) are
expressed uniquely as Q-linear combination of above
polynomials

dim X /2
P.(t) = kZ_Il a, (0P, (),

dim X /2
Q.() = kZ_:l b, (D) Q, (D,

with a, (1), b, (1) € Q.
Proof. t¥7'is uniquely expressed by P.()’s
(resp. Q,(H’s). For example t= P,(®), =

P, + P ete. t= @D, £ = Q,(D + 5 QD).

etc. And the lemma follows from the fact that
P_(f) and Q,(¢) are both odd polynomials. ]
To prove (b) of the theorem, the following
lemma is fundamental:
Lemma 4.3. Let f,(2) =, I, (z+ K%
for a sequence of rational numbers {a,} cz. Then,
(2 =1=> Va,=0.
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Proof. f,(2)/f(z+ 1) = f,_,(2) holds by
using a property of multiple gamma functions.
Therefore, f,(z) =1 implies f,_,(2) = 1. We
must prove the case » = 0, but this is trivial be-
cause I,(2) = 1/z ]

5. Functional equation of the Ruelle zeta
function. Let us consider the case of G =
SO@n, 1). The Ruelle zeta function R(s) of X is
defined for Re(s) > 2un — 1 by

R() =1 A—-N®™,

peP,
where P is the set of all primitive hyperbolic

conjugacy classes of I'= 7,(X) the fundamental
group discretely embedded in G, and N(p) is the
norm function. Fried [1] shows that R(s) can be
written as a product of generalized Selberg zeta
functions:

R(s) = n Z,,(s+1— 17,

o) : M— AT I(Czn ') standard representations.
where M is the centralizer of A in K under the
Iwasawa decomposition G = KAN. In our case,
K=5S0@n) and M = SO@2n — 1). We know
that the gamma factor of Z,,(s) is I, (s) =

1 .
Iy, (s) from Theorem 1, p, =n — 5 and dim X

=2n:
L,,(s) =

-1 o am \]ED
I (I, (s — k)T (s + k + 1) (,_H)] .
k=0

Theorem 2. Let X = '\ SO@2n, 1)/S0(2n)
be a compact real hyperbolic space. Then the Ruelle
zeta function R(2) of X has the following functional
equalion:

(3) R@-R(—2) = (— 4sin’* ()" .
Here, ¢(X) = (— 1)" 'vol(X).

Proof. R(2)-R(— 2)

_ [ ZwGzt+1—=1)  Z,,(
CalzZy(—z+2n—0 Z,,(z+2n—10

=11 I 5, G+1—k—1D
I=1 “k=0

—zt1- 1)]<—1>"‘

2n

(=D LX)
Sunz+ 1+ 1) (1))

—z+I1—k—-1)

-1
on >] (~DFlecx)

S, (— z + 1+ k)27

2n—1
= 1I (S,,(z+7)S,,(—

j=0

z + j))d(f)‘C(X)

a@) =

[Vol. 71(A),

1 =0,...,n

[(— (- ) + (- )/bG)
cg=n+1,..,2n—1

(= 1)b()

] 2n )
b(]) ﬂSli:mm(n 7) < 21 —J = 1 ) ( " ])
= fI (S,,(z +7)S,,(—z+ j))@imaen=in-e

X~
[
-

= H (S,,(z+ 7)S,,(— z+ j))(’*l)’(n—])(zln).c(x)

= (s (s)- S, (= 2)" ™

= (— 4 sin’(z2))"*¥. QED. O
Remarks. We have used the known prop-

erties of multiple sine functions such as following

in above calculations.

Sl(z) = Fl(z)_lrl(]- - Z)—l
= (@D () @0 ra — 217
= 2 sin(xz).
and
Syu(@)-S,,Cn — a) =1,
and
S, (z) S (—2

=T (S, 2+ 1) S,,(— 2+ 7))

i=0

=T (S, 4+ 1)S,, (— 2+ jplev () -com(52))
j=0

"ﬁ (S,,z + ) S, (— z + )2,
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