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A Uniform Construction of the Root Lattices Eq, E;, Eg
and their Dual Lattices*

By Tetsuji SHIODA

Department of Mathematics, Rikkyo University
(Communicated by Shokichi [IYANAGA, M. J. A., Sept. 12, 1995)

A simple construction of the root lattice E,
and its dual lattice E;k is given, which works uni-
formly with respect to the rank » = 6,7,8. An
advantage of this construction is that the descrip-
tion of the minimal vectors in E, and E, is
reasonably concise; for instance, the 240 roots in
E; can be enumerated in a few lines. (Compare
with standard references such as [1], [2, Ch.4,
§8], [3, Ch. 4)).

Our construction is inspired by 1) the clas-
sical theory of del Pezzo surfaces, according to
which a del Pezzo surface of degree d = 1,2,3 is
a blowing up of » = 9 — d points from the pro-
jective plane P’ (cf. [3]), and 2) the viewpoint of
Mordell-Weil lattices (cf. [4], [5], [6], [7]).

1. Construction.

Definition. Let L, be a free Z-module of
rank 7 = 6,7,8 generated by 7 elements %,,...,
#,, and define a symmetric bilinear pairing on L,

by the rule:
1
(1) $u;, wp = 0,; + 4
where we set d=9 —7» so that d= 3,2,1
according as » = 6,7,8.
Proposition 1. L, is a positive-definite lattice
of rank v such that

3 (r=26)
2) dau=1+§=-%v=m
9 (»r=28)

Proof. This is an immediate consequence of
the following:

Lemma 2. Suppose that A = (a;;) is a real
symmetric matrix of degree n such that a; = 0;; + s
for all i, j for a fixed positive number s. Then det A
= 1 + ns. In particular, such a matrix A is always
positive-definite.

Proof. Note that each line sums up to 1 + #zs.
Hence

*) To the memory of Akira Okada.
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This proves the first assertion. For any 1=
1,2,..., n, the i-th principal minor of A has

det = 1 + is > 0. Hence A is a positive-definite
matrix. Q.E.D.

Definition. Let L, be the Z-submodule of
L,® Q generated by L, and the following ele-
ment v, :

1 7
(3) v%W=73 2 u,.
i=1
Proposition 3. By mnaturally extending the

pairing <,> to L,, it becomes a positive-definite lat-
tice of rank v such that [L,: L,] = 3. We have

% (r=6)

=~ 1
(4) detL,—gdetL,— _;_ =1
1 (r=28)

Proof. In general, if U is a sublattice of in-
dex v in a lattice V, then we have det V=
det U/V’. Hence the result. Q.ED.

Note that



1 (r=6)
—%(1+§> %(r=7)
3 (r=298)
and
2 (r=06)
6) vy, vy = %% <1 + 5) = % r=17
8 (r=28)
Definition. We set
(7) a; =u; —u; GFj)
(8) Bijx = vy — (u; +u; +u,) (, 7, k distinct)

Let L‘L denote the sublattice of L, generated by
the 7 elements:

9 a;=a;,;,G=1,...,v— 1), B= B
Lemma 4. (i) Each element a,; or B;j, has

norm 2:

(10) o ai> = 2, {Byjiy Bijw> = 2.

(ii) For the 7 elements in (9), we have for 1 # j
-1 (Ji—jl=1
0 otherwise

-1 (=23)

0 olherwise

’

(11)  ALa, ap = {

B, ap = {

Proof. This is easily checked by using (1),
(5), (6). Q.E.D.

The above lemma shows that {a;, B} forms a
basis of the root system of type E,, associated
with the Dynkin diagram (cf. [1], [3]).

oy

Theorem 5. For any ¥ = 6,7,8, the lattice L(;
is isomorphic to the root lattice E,, and L, is isomor-
phic to the dual lattice E;k of E,.

Proof. Since L) is generated by {a,, B}
which forms a basis of the root system of type
E,, it is clearly isomorphic to the root lattice E,.
In particular, we have det L), =detE, =d=
3,2 or 1 according as # = 6,7 or 8. This implies
that the index of L® in L, is d.

On the other hand, we claim that L, is con-
tained in the dual lattice (L) of L°. It suffices
to check this for generators {u;, v, of L, By

A Uniform Construction of the Root Lattices E, E,, Eg and their Dual Lattices 141

(1)-(8), we have

(12) ujp, ) =0;,;, — 0,1, €EZ

(13) Luy, B = — (0, + 0, + 0, €EZ.

Hence each u; is contained in (L))*. Similarly,
we have

(14) vy, ap = 0,
This shows v, € (L)

Thus we have proved that I:, is contained in
(L)*. By noting that the index [L):L,] =d is
equal to [E,: EJ], we conclude that L, = (L)*
=~ E;. QED.

Corollary 6. The orthogonal complement
o™ of vy in L, @ Q is generated by {a;} in (9).

Proof. This is immediate [rom (14). Q.E.D.

Remark. In case » = 8, we see directly that
I:s is an even integral lattice. Indeed, its gener-
ators satisfy <u;, 7 =2 and <o, vy = 8.
Hence 1:8 is a positive-definite even unimodular
lattice of rank 8. As is wellknown, such a lattice
is unique up to isomorphism, and this givés
another proof of the fact Ly = Ly = E,.

2. Minimal vectors.
make the identification:

L°=E, L,=E).
We keep the same notation as before: u;, v,,
Bijicr - - -

Now we describe the minimal vectors of E
in terms of #;, v, Also we determine the positive
roots of E, with respect to the chosen basis
{a;, B}.

Let us introduce some more elements of E,*
We set
(15) w,=u;,—v,G=1,..., 1),

(16) T = 0o — u; — u; (0 F 7).
The norm of these vectors can be easily com-
puted. We have

{vy, B> = — 1.

From now on, we

i

2 0=9
(17) uf, up = 2 (r=17)
4 (r=28)
2 o=6
(18) Gip T = 3 o=n
2 (r=28)

Case r=6. For =6, it is known that
there are 72 roots (of norm 2) in E; and that

there are 54 minimal vectors of minimal norm
4/3in E;".
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Theorem 7. For v = 6, consider the following
set:

(19.) =

7

{luy u,=u,—v,i=1,...,6),

T = vy —u; —u; (10 < )}

Then (1) it consists of 6 + 6 + 15 = 27 minimal
vectors of Ey, and the union of 2 and — R gives
all the 54 minimal vectors of Eq .

(11) The Weyl group W(Ey) acts transitively on the
set 82, and Q and — L arve the lwo orbits of
W(Eg) in the sel of minimal vectors.

(i49) The 72 roots of Eg are given by * vy, a;;(i #
7), and £ B, (G <j<k.

(iv) The following elements

(20) — vy, a;;( < ), Bt <j<k)

give 1 + 15 + 20 = 36 positive roots with respect
to the basis {a;, B} in (9).

Proof. By (1), (17), (18), wu; u;, r;; have
norm 4 /3, i.e. they are minimal vectors in E:
Next all the elements in £ and — £ are distinct;
this is immediate if we look at their expression
as Q-linear combination of #,,. .., %, Hence (i)
follows.

Similarly (iii) follows from (6) and (10).

To show (iv), we check that each element in
(20) is a linear combination of «;, 8 with non-
negative (integer) coefficients. In fact, we have
21) —v,=2B+ a, +2a, + 3a; + 2a, + «a;.
(22) a;=a;+a;,,+ - +a_, (G<j)

(23) B =B+ (<j<k).

Here --- stands for a linear combination of «,.
Of the above relations, (21) and (22) are obvious.
For (23), note that B;;, — B is orthogonal to v,
and hence it is a linegr combination of «; by
Corollary 6. Further the coefficients must be
necessarily nonnegative, since the coefficient of 8
is 1 > 0. (Recall that any root in a root lattice is
either positive or negative, i.e. the coefficients in
terms of a basis are simultaneously nonnegative
or nonpositive.)

For (ii), recall ([1]) that the Weyl group
W(E,) < Aut(E,) is the subgroup generated by
the reflections s, which are defined as follows:
for each root a, we let

s;@ =xr—{x, Wa(xEE,).
To prove (ii), we show in the lemma below that
5.(8) < Q for a= a,,(m < r=6) or B in the
basis. Since such s, generate W(E,), 2 is acted
on by the Weyl group. Further, this action is
transitive, as is clear from the lemma.

Lemma 8. (i) Suppose a = «,,(m < 6). Then
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S, permutes the elements in each set {u;}, {u}},
{7} among themselves. More explicitly, we have

U;
(24) sa(ui) = ui+1’

Uiy

u, GF+Fm,m+1)

se(u’) = Yui, G=m)

u,, G=m+1).
Let M= {m, m+ 1}. Then, for 7, <j), we
have

1, Ul =Moulil NM=0

(25) Sa(Tij) =\Tin; fIEM,] EM

Tij+1 ifiéM,jEM.

(ii) Next suppose o = B = B3, and set J =
{123}, K = {456}. Then
u, (€K
7 G € J={yk}),

N Ui GEJ
85 (i) = [rjk (i € K = {ijk})
u, (,j€J= gk}
u, (,j7€ K= {jk})

7ij otherwise

(26)  sy(u) = {

27 sg(r) =

Proof. The verification is straightforward
and is omitted.

This completes the proof of Theorem 7.

Remark. Theorem 7 is closely related to
the theory of the 27 lines on a cubic surface. The
set £ can be put in a bijective correspondence
with the set of 27 lines, and {u;, u; (=1,...,
6)} plays the role of double six in Schlafli’s sense.
For this, we refer to [7]; cf. [3].

Case r = 7. It is known that there are 126
roots (of norm 2) in the root lattice E, and 56
minimal vectors of minimal norm 3/2 in the dual
lattice E;.

Theorem 9. (i) The minimal vectors of E7*
are given by
(28) tuG=1,...,7,

Ty, = 2@, —u, —u) G<j).
(ii) The positive roots of E, are given by the follow-
g 7+ 21 + 35 = 63 elements:
(29) u;=u; — vy, ;1 < j), Byt <7< k).

Proof. First (i) follows from (1) and (17). In
the same way as the proof of Th. 7 (iv), we have
(30) wu;=2B8+ ---

3l) a;=a,ta,,+ - +a_ G<j)
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(32) By=B+ - (G<j;j<k
where - - - indicates a linear combination of «;
with nonnegative integral coefficients. Q.E.D.

Remark. For the connection to algebraic
geometry, we refer to [3] and [6].

Case r = 8. It is known that there are 240
roots (of norm 2) in Eg which are at the same
time the minimal vectors of E; = E,.

Theorem 10. The following 8 + 28 + 56 +
28 = 120 elements :

(33) —u,1=1,...,8), a;i <),
Bin(G<ji<k), —71,G<j)

are the positive roots of Eg with respect to the basis

B, a;(1 < 8))}.

Proof. All these elements have norm 2 by
(1), (10) and (18), and they (and their minus) are
distinct elements in Eg; Further, by the same
arguments as the proof of Th. 7(iv), we have

(34) —u, =38+ ---
(35) a;=a;, Ta;, Tty (t<j)
(36) Bi,k=,3+"‘(i<j<k)

(37) — 7y =28+ G<j)
with the unwritten part : - meaning as usual
some linear combination of @; with nonnegative
integral coeffients. Q.E.D.
Remark. In [1], a root of the form
bB + 2, c,a; € E, is denoted by the symbol
€1 G C3 647" €y
b ’
which will be denoted here by (b;¢; ¢, ¢;* -
¢,_,) for the sake of easier printing. Then the
above (34) can be written out as follows:
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—u,=(3;1354321), —u,=(3;2354321)

—u;,=3;2454321), —u,=(3;2464321)

—u;=@3;2465321), —u,=(3;2465421)

—u,=(3;2465431), —u,=(3;2465432).
These roots are listed at the last part in the table
of positive roots of Eg in [1], Planche VII (II),
presumably because they have the most compli-
cated coefficients. The corresponding facts hold
for the cases » = 6,7.

As it turns out, our uniform construction for

ry =6,7,8 may be said to go the other way
around, since we start from %,,..., «,.
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