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A Uniform Construction of the Root Lattices E6, E7, E8
and their Dual Lattices *)

By Tetsuji SHIODA

Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1995)

A simple construction of the root lattice Er
and its dual lattice E* is given, which works uni-
formly with respect to the rank r 6,7,8. An
advantage of this construction is that the descrip-
tion of the minimal vectors in Er and E* is
reasonably concise; for instance, the 240 roots in
E8 can be enumerated in a few lines. (Compare
with standard references such as [1], [2, Ch.4,
8], [3, Ch. 4]).

Our construction is inspired by 1) the clas-
sical theory of del Pezzo surfaces, according to
which a del Pezzo surface of degree d 1,2,3 is
a blowing up of r 9- d points from the pro-
jective plane P (cf. [3]), and 2) the viewpoint of
Mordell-Weil lattices (cf. [4], [5], [61, [7]).

1. Construction.
Definition. Let Lr be a free Z-module of

rank r 6,7,8 generated by r elements Ul,

u,, and define a symmetric bilinear pairing on L,
by the rule"

1
(1) (u, u) 8 + d
where we set d= 9-- r so that d= 3,2,1
according as r- 6,7,8.

Proposition 1. Lr is a positive-definite lattice

of rank r such that
3 (r 6)

r 9
(2) detL- 1 +-= - (r= 7)

9 (r 8)
Proof. This is an immediate consequence of

the following:
Lemma 2. Suppose that A (a) is a real

symmetric matrix of degree n such that aij ( + s

for all i, j for a fixed positive number s. Then detA
1 + ns. In particular, such a matrix A is always

positive-definite.

Proof Note that each line sums up to 1 + ns.
Hence

det A

l+s
s

s

S S

l+s s

s l+s

l+s s s
s l+s s

1 +ns l+ns 1 +ns

(1 + ns)

l/s s s
s l/s s

1 1 1

1 0 0
0 1 0(l+ns) .. 1+

1 1 1

This proves the first assertion. For any i
1,2,..., n, the i-th principal minor of A has
det 1 + is > 0. Hence A is a positive-definite
matrix. Q.E.D.

Definition. Let be the Z-submodule of

Lr @ Q generated by L and the following ele-
ment vo:
(3) Vo - u.

i=1

Proposition 3. By naturally extending the
pairing (,) to r, it becomes a positive-definite lat-
tice of rank r such that [r Lr] 3. We have

1

1 - (r- 6)

(4) det Lr det L 1- (r=7)

1 (r 8)

Proof In general, if U is a sublattice of in-
dex v in a lattice V, then we have det V
det U/v2. Hence the result. Q.E.D.

Note that

*) To the memory of Akira Okada.
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(5)

and

1
(Vo, u> - (u,

1

=-+ =-2

(r- 6)

(r-- 7)

(r- 8)

2 (r 6)

(6) vo, vo) 5" 1 + (r 7)

DefinRn. We set
(7) a u-- u (ij)
(8) fl vo- (u+ u+u) (i,j, kdistinct)

0Let Lr denote the sublattice of r generated by
the r elements:
(9)

Lemma 4. (i), Each elemenl or fl has
norm 2:
(10) <a, a> 2, <fl, fl> 2.
(ii) For the r elements in (9), we have for i j

-1 ([i-jl- 1)
(11) (i, j) 0 otherwise

-1 (i-3)
(fl’ ) =

0 otherwise

Proof This is easily checked by using (1),
(5), (6). Q.E.D.

The above lemma shows that {oi,/9} forms a
basis of the root system of type Er, associated
with the Dynkin diagram (cf. [1], [3]).

0
Theorem 5. For any r- 6,7,8, the lattice L

is isomorphic to the root lattice Er, and r is isomor-

phic to the dual lattice E*r of Er.

Proof Since Lr is generated by {os, fl}
which forms a basis of the root system of type
E it is clearly isomorphic to the root lattice E
In particular, we have detLr deter-d-
3,2 or 1 according as r-- 6,7 or 8. This implies

0
that the index of Lr in /’r is d.

On the other hand, we claim that Lr is con-
tained in the dual lattice (Lr)* o

of L r. It suffices
to check this for generators (/s, Vo} of L By

(1)-(8), we have
(12) (us, o[j> (ij- (i j+l

( Z
(13) (u, fl) (6 + 6,. + 6a) Z.
Hence each u is contained in (Lr) *. Similarly,
we have
(14) (Vo, aj) 0, (Vo, fl) 1.
This shows vo (Lr)*.

Thus we have proved that/r is contained in

(L)*. By noting that the index [L’[_,r] d is
equal to [Er" E*r], we conclude that ’r (Lr)*-- Er*. Q.E.D.

Corollary 6. The orl hogonal complement

<Vo> of vo in L r ( Q is generaled by {a} in (9).
Proof. This is immediate from (14). Q.E.D.
Remark. In case r 8, we see directly that

//-s is an even integral lattice. Indeed, its gener-
ators satisfy (u s, u> 2 and <Vo, Vo> 8.
Hence L s is a positive-definite even unimodular
lattice of rank 8. As is wellknown, such a lattice
is unique up to isomorphism, and this gives
another proof of the fact L Ls Es.

2. Minimal vectors. From now on, we
make the identification:

L Er, Lr Er*.
We keep the same notation as before: u s, Vo, csy,
5ijk

Now we describe the minimal vectors of Er*
in terms of u s, vo. Also we determine the positive
roots of Er with respect to the chosen basis

{a,, 5}.
Let us introduce some more elements of Er*.

We set
"= Vo (i 1 r)(15) u u

(16) 7"s Vo- us- u (i 4= j).
The norm of these vectors can be easily com-
puted. We have

(17) <u, u>
4- (r 6)

2 (r- 7)
4 (r- 8)

4- (r- 6)

(18) (’s, ’sj) 3- (r- 7)

2 (r 8)
Case r--6. For r= 6, it is known that

there are 72 roots (of norm 2) in E6 and that
there are 54 minimal vectors of minimal norm
4/3 in E*.
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Theorem 7. For r 6, consider the following
set:
(19) /2: {ui, ui u Vo(i: 1 6)

rj= v0--u--uj(i<j)}.
Then (i) it consists of 6 + 6 + 15 27 minimal
vectors of E*, and the union of and gives
all the 54 minimal vectors of E*s
(ii) The Weyl group W(E6) acts transitively on the
set , and Q and -- are the two orbits of
W(E6) in the set of minimal vectors.
(iii) The 72 roots of E6 are given by + Vo, cri(i
j), and +--- flik(i < j < k).
(iv) The following elements
(20) Vo, cq(i < j), flk(i < j < k)
give 1 + 15 -4- 20 36 positive roots with respect
to the basis {c, 9} in (9).

Proof By (1), (17), (18), u, u, 7"ij have
norm 4/3, i.e. they are minimal vectors in Es*.
Next all the elements in .Q and .Q are distinct;
this is immediate if we look at their expression
as Q-linear combination of ul,..., Ur. Hence (i)
follows.

Similarly (iii) follows from (6) and (10).
To show (iv), we check that each element in

(20) is a linear combination of r,/ with non-
negative (integer) coefficients. In fact, we have
(21) v0 = 2/5 + or1 + 2a2 + 30:3 -1-" 2C4 -4-
(22) Cr=C+cr++ +cr_(i<j)
(23) /9 fl + (i < j < k).
Here stands for a linear combination of
Of the above relations, (21) and (22) are obvious.
For (23), note that flk--fl is orthogonal to v0,
and hence it is a linear combination of cr by
Corollary 6. Further the coefficients must be
necessarily nonnegative, since the coefficient of
is I > 0. (Recall that any root in a root lattice is
either positive or negative, i.e. the coefficients in
terms of a basis are simultaneously nonnegative
or nonpositive.)

For (ii), recall ([11) that the Weyl group
W(Er) Aut(Er)is the subgroup generated by
the reflections s which are defined as follows:
for each root or, we let

s. (x) x <x, oe> oe (x Er).
To prove (ii), we show in the lemma below that
s.() Q for a Crm(m < r 6) or fl in the
basis. Since such s. generate W(Er), is acted
on by the Weyl group. Further, this action is
transitive, as is clear from the lemma.

Lemma 8. (i) Suppose cr Crm(m < 6). Then

Sa permutes the elements in each set (u}, {u},
(Ty} among themselves. More explicitly, we have

(24) s,(ui) u+,
/i--1

s(u? u’i+1
i--1

Let M= {m, m+ 1}. Then, for T(i < j), we

have

(i:/:m,m+ l)
(i- m)
(i- m+ 1).

(25)
if ij} M or ij} (3 M 0

ifi M,j M
ifi M,j M.

(ii) Next suppose c--fl 5123, and set J
(123}, K- {456}. Then

u (i K)
(26) s(u) . (i J- {ijk}),

s (u) { u (

r (i K {ijk}

u (i, j J-- {ijk})
(27) se(T) u’ (i, j K- {ijk})

T otherwise

Proof. The verification is straightforward
and is omitted.

This completes the proof of Theorem 7.
Remark. Theorem 7 is closely related to

the theory of the 27 lines on a cubic surface. The
set Y2 can be put in a bijective correspondence
with the set of 27 lines, and {u, u (i-- 1,
6)} plays the role of double six in Schltfli’s sense.
For this, we refer to [7]; cI. [3].

Case r 7. It is known that there are 12(3

roots (of norm 2) in the root lattice Er and 56
minimal vectors of minimal norm 3/2 in the dual
lattice E*.

Theorem 9. (i) The minimal vectors of E*
are given by
(28) --+ u (i 1,..., 7),

+-- 7"i= +--(Vo--U--u) (i<j).
(ii) The positive roots of E are given by the follow-
ing 7 + 21 + 35 63 elements"
(29) u u Vo, cr,(i < j), flj(i < j < k).

Proof. First (i) follows from (1) and (17). In
the same way as the proof of Th. 7 (iv), we have
(30) u 2fl +
(31) cr= cri+r+i+ +cr_(i<j)
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(32) /3=/3+ (i<j< k)
where indicates a linear combination of
with nonnegative integral coefficients. Q.E.D.

Remark. For the connection to algebraic
geometry, we refer to [3] and [6].

Case r 8. It is known that there are 240
roots (of norm 2) in E8, which are at the same
time the minimal vectors of Es* Es.

Theorem 10. The following 8 + 28 + 56
28 120 elements:
(33) u(i 1, 8), a(i < j),

flijk(i < j < k), 7"j(i < j)
are the positive roots of Es with respect to the basis

{, a(i < 8)}.
Proof All these elements have norm 2 by

(1), (10) and (18), and they (and their minus) are
distinct elements in Es. Further, by the same
arguments as the proof of Th. 7(iv), we have
(34) u=3fl+

(6) B =/ + (i < j < k)
(37) T=2/3+ (i<j)
with the unwril;ten part meaning as usual
some linear combination of c with nonnegative
integral coeffiehts. Q.E.D.

Remark. In [1], a root of the form

bfl + cai E is denoted by the symbol

C 62 63 C4 Cr_
b

which will be denoted here by (b;Q c. c"
Cr_l) fo the sake of easie pinting. Then the
above (34)can be witten out as follows:

-ua= (3;1354321), -u2= (3;2354321)
-u (3;2454321), -u (3;2464321)
-u (3;2465321), -u6 (3;2465421)
-u (3;2465431), -us (3;2465432).
These roots are listed at the last part in the table
of positive roots of Es in [1], Planche VII (II),
presumably because they have the most compli-
cated coefficients. The corresponding facts hold
for the cases r 6,7.

As it turns out, our uniform construction for
r--6,7,8 may be said to go the other way
around, since we start from ux,..., u,

[21

[3]

[51

[71
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