Absolutely Continuous Spectra of Relativistic Schrödinger Operators with Magnetic Vector Potentials

By Tomio UMEDA

Department of Mathematics, Himeji Institute of Technology (Communicated by Kivosi ITÔ, M. J. A., Nov. 14, 1994)

Key words: Spectral theory; scattering theory; relativistic spinless particles; magnetic vector potential.

§1. Introduction. A spinless particle in an electromagnetic field is described by a relativistic Schrödinger operator

$$H = h^w(x, D) + V(x),$$

where

$$h^{w}(x, D)u(x) = \int \int e^{i(x-y)\cdot\xi} h\left(\frac{x+y}{2}, \xi\right)u(y)(2\pi)^{-n}dyd\xi,$$

$$h(x, \xi) = \sqrt{|\xi - a(x)|^{2} + m^{2}},$$

$$(x, \xi \in \mathbf{R}^{n}, m > 0).$$

Although many efforts have been made to understand the nature of the operator H, there are few works in which spectral properties of H are investigated (cf. [2]-[7]). Indeed, Nagase and Umeda [8] is the only work locating the spectrum of the operator H as far as we know. In [8] they showed that $\sigma_{\rm ess}(H)=[m,\infty)$ under the following assumptions (precisely speaking, their assumptions on a(x) are weaker than (I) and (II) below):

- (I) For any multi-index α , $\partial_x^{\alpha} a(x) \to 0$ as $|x| \to \infty$. (II) $V(-\Delta + 1)^{-1/2}$ is a compact operator in $L^2(\boldsymbol{R}^n)$.

From the view point of spectral and scattering theory, it is natural to ask whether the absolutely continuous spectrum of H coincides with the interval $[m, \infty)$, and whether the singular continuous spectrum is empty. The aim of this note is to make a remark that the Enss theory can give answers to these questions. Finally, we mention here that our assumption on a(x) is stronger than (I) and (II) above for technical reason.

- §2. Results. Throughout this section, ε denotes a positive constant and $\langle x \rangle = \sqrt{1+|x|^2}$. For the vector and scalar potentials $a(x) = (a_1(x), a_2(x))$ $\dots, a_n(x)$) and V(x), we make the following assumptions respectively:
- (A) Each $a_j(x)$ is a C^{∞} -function such that $|\partial^{\alpha} a_j(x)| \leq C_{\alpha} \langle x \rangle^{-1-\varepsilon}$ for any α . (V) V(x) is a real-valued measurable function such that $|V(x)| \le$ $C\langle x\rangle^{-1-\varepsilon}$

It is known [8, section 2] that under assumptions (A) and (V) the operator $h^w(x, D) + V(x)$ restricted on $C_0^{\infty}(\mathbf{R}^n)$ is essentially self-adjoint in $L^{2}(\mathbf{R}^{n})$. Its self-adjoint realization will be denoted by H again. It is also known [8, section 2] that $Dom(H) = H^1(\mathbb{R}^n)$, the Sobolev space of order 1. Our result is

Theorem. Let (A) and (V) be satisfied. Then

- (i) H has no singular continuous spectrum. The absolutely continuous spectrum of H is the interval $[m, \infty)$.
- (ii) m is the only possible limit point for the point spectrum of H. Any eigenvalue in the interval (m, ∞) has finite multiplicity.

Remark. In the proof of the theorem above, we apply a theorem in [11], which is an extension of Enss [1]. See also Perry [9] and Simon [11], which are also extensions of [1].

Sketch of the proof. Let H_0 be the self-adjoint realization in $L^2(\boldsymbol{R}^n)$ of the operator $\sqrt{-\Delta+m^2}$ restricted on $C_0^\infty(\boldsymbol{R}^n)$. It is evident that $\mathrm{Dom}(H_0)=H^1(\boldsymbol{R}^n)$. Define $r(x,\xi)=h(x,\xi)-\sqrt{|\xi|^2+m^2}$. It is straightforward that for every pair of multi-indices α and β (2.1) $|\partial_\xi^\alpha\partial_x^\beta r(x,\xi)| \leq C_{\alpha\beta}\langle x \rangle^{-1-\varepsilon} \langle \xi \rangle^{-|\alpha|}$.

In order to apply [11, Theorem 1], we need to rewrite the operator $r^w(x, D)$ as an operator with ordinary symbol: Defining

$$r^{o}(x, \xi) := \operatorname{Os} - \int \int e^{-iy \cdot \eta} r\left(x + \frac{y}{2}, \xi + \eta\right) (2\pi)^{-n} dy d\eta,$$

we see that $r^w(x, D) = r^o(x, D)$. By integration by parts we deduce that $r^o(x, \xi)$ obeys the same inequality as in (2.1). We can now apply [11, Theorem 1] with $p(\xi) = \sqrt{|\xi|^2 + m^2}$, $a(x, \xi) = r^o(x, \xi) + V(x)$ and get all the conclusions of Theorem 1 of [11], which imply conclusions (i) and (ii) of the theorem.

References

- [1] V. Enss: Asymptotic completeness for quantum mechanical potential scattering. Commun. Math. Phys., **61**, 285–291 (1978).
- [2] T. Ichinose: The nonrelativistic limit problem for a relativistic spinless particle in an electromagnetic field. J. Funct. Analysis., 73, 233-257 (1987).
- [3] —: Essential selfadjointness of the Weyl quantized relativistic hamiltonian. Ann. Inst. Henri Poincaré, Phys. théor., **51**, 265-298 (1989).
- [4] —: Note on the kinetic energy inequality leading to Lieb's negative ionization upper bound. Lett. Math. Phys., 28, 219–230 (1993).
- [5] T. Ichinose and H. Tamura: Imaginary-time path integral for a relativistic spinless particle in an electromagnetic field. Commun. Math. Phys., **105**, 239–257 (1986).
- [6] W. Ichinose: On essential self-adjointness of the relativistic hamiltonian of a spinless particle in a negative scalar potential. Ann Inst. Henri Poincaré, Phys. théor., 60, 241-252 (1994).
- [7] M. Nagase and T. Umeda: Weyl quantized Hamiltonians of relativistic spinless particles in magnetic fields. J. Funct. Analysis, **92**, 136–154 (1990).
- [8] —: Spectra of relativistic Schrödinger operators with magnetic vector potentials. Osaka J. Math., **30**, 839-853 (1993).
- [9] P. A. Perry: Scattering Theory by the Enss Method. Mathematical Reports, vol. 1., Harwood Academic Publishers, Chur (1983).
- [10] B. Simon: Phase space analysis of simple scattering system: Extensions of some work of Enss. Duke Math. J., 46, 119-168 (1979).
- [11] T. Umeda: Scattering theory for pseudo-differential operators. II. The completeness of wave operators. Osaka J. Math., 19, 511-526 (1982).