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55. Complements to the Furuta Inequality*)

By Masatoshi FUJII*), Takayuki FURUTA* *), and Eizaburo KAMEI* * *)

(Communicated by Kiyosi IT0, M. J. A., Sept. 12, 1994)

Abstract: Complementary results to the Furuta inequality are given in

cases of positive invertible operators.

[}1. Introduction. In what follows, a capital letter means a bounded
linear operator on a complex Hilbert space H. An operator T is said to be
positive (in symbol: T > 0) if (Tx, x) >_ 0 for all x H. Also an operator
T is strictly positive (in symbol: T > 0) if T is positive and invertible.

As an extension of the L6wner-Heinz theorem [12][10], we established
the following Furuta inequality [4].

Theorem A (Furuta inequality). IfA >_ B >_ O, then for each r >_ O,
(i) (BrAB)/ >- (BBBr)
and
(ii) (ArAPAr) 1/q (ArBPAr) /

hold forp and q such that p >-- 0 and q >-- 1 with (1 2r)q >_ p + 2r.
Alternative proofs of Theorem A are given in [1][5] and [11] and also

one page proof is shown in [6]. Recently it turns out that Theorem A has a
lot of applications, in fact [2][3][7][8] and [9] are some of them.

We remark that the Furuta inequality yields the following famous
L6wner-Heinz inequality when we put r-- 0 in (i) or (ii) of Theorem A;

Theorem B (L6wner-Heinz inequality).
(*) A >_ B >_ 0 ensures A >- B for any [0,1].

[}2. Statement of results. Theorem 1. IrA B > O, then
(BrABr) >_ (BrBBr)

holds under any one of the following conditions;

aft-- I1 <a 0<fl< 1 and?(i) 2(1 /9)
1 fl--1(ii) cr<_ 1, 1 </ 2, and7= 2(1--fl)
1 a-- 1

(iii) - <_ a <_ 1, 2 fl, and 7" 2(1 --/)"
Remark 1. (i) and (ii) are announced in [13, p. 61], but in the proof of

Theorem 1 under below we remark that (i) is nothing but exchange of para-
meters p, q and r in Theorem A and a simple proof of (ii) can be obtained
along a method of [6] by using polar decomposition. In this paper we shall

t)
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show (iii). We have to assume invertibility of A and B in the cases (ii) and
(iii) since T < 0.

We cite the following known result to give a proof of Theorem 1.
Lemma A [7]. Let A and B be positive invertible operators. For any real

number r,
(BAB) BA"(A/"B"A)-A/’B.
1

Lemma 1. Let - <-- or<_ 1, 2n <_ <_ 2n + 1 for some natural number

od3--1n and 7 2 (1 fl)" Then the following(i) and (2) hold;

(1) x (z + 2;’)(/9 2n) + 2r + (2r + 4r)j e [-- 1,0] for j 0,1,2,
...,n--1.
(2) y (er + 2r)(- 2n) + 2r + (2or + 4r)j + 2a e [0,1] for j 0,1,2,

1
Lemma 2. Let -<-- o<_ 1, 2n + 1 _</9<_ 2(n+ 1) for some natural

aft-- I
number and 7---- 2(1 /9)" Then the following (3) and (4) hold"

(a) x (or + 2’)( 2n 1) + cr + (2cr + 4r)j e [0,1] for j 0,1,2,
...,n--l,n.
(4) y= (cr+27)(/9--2n-- 1) +or+ (2cr+4T)j+47 [-- 1,0] for j=
0,1,2,..., n-- 1.

Proof of Lemma 1. (1) It turns out that xo <--x, <-- <-- xn_ by the
definition of x and erR-21"--> 0. On the other hand x_l 1--2or <_ 0

i 2 (1 cr) (/9 n)
since - cr and Xo (cr + 27)(fl- 2n) + 27 + 1 1 fl- 1

1 --> 1. Hence x E [-- 1,0] for j 0,1,2,..., n 1.
(2) Yo <- Y <- <-y.-. <-y"- since yy-xyq-2cr and xo-<x-<

<-- x,_. <-- x,_ stated in the proof of (1). yy x + 2or >-- 1 + 2or >_ 0 since

x _> 1 by (1) and Yn-1 1 since Yn-1 xn_l + 2cr 1 2cr + 2c
1. Hence y e [0,1] for j 0,1,2,..., n 1.
Proof of Lemma 2. (3) xo --< x --< x --< <-- x,, by the definition of x

and c + 27" --> 0. On the other hand Xo= (c+27)(/9--2n-- 1) +cr_>c
1>-- - and x, 1. Hence x Is, 1] c_ [0,1] for j 0,1,2,..., n 1, n.

(4) Yo -< Y -< -< Y,-a -< Y,- since y x + 4?" and Xo <-- x <--
--< x,_l --< x, stated in the proof of (3). Yo= (c+27)(fl--2n--1)+a+

(1--c0(l+fl)
_>0 and y_=4T ->cr+4g>-- 1 since cr+4g+ 1= /9-- 1

1 2or 0. Hence y_ [-- 1,0] for j 0,1,2,..., n 1.

Proof of Theorem 1. (i) Put (1 +2r)q=p+2r for r_>0, p_> 1 and
q >_ I in Theorem A, then we easily obtain p _> q --> 1 and we have only to re-
place p by or, r by T and 1/q by/9.

(ii) First of all, we easily obtain the following (5), (6) and (7):
(5) 2T E [-- 1,0],
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(6)
(7)

fl-- 1 [0,1],
c+ (c4-27)(fl-- 1) =1.

Then we have
(BrAaBr) BrAZ(A’ZBrAz2)-lA’Z2Br by Lemma A

>_ BrA/(A/AA/)-A/B by (5), (6) and (*)
BrA"+("+r)(-I)Br

BrABr by (7)
>-- B l+2r B (a+2r)a

by (7).
(iii) (a) In the first ease 2n <_ [3 <_ 2n + 1 for some natural number n.

(BrA"Br) (BrA"Br)’(BrA"Br)-2’ (BrA"Br)’

>_ (BrA"Br)"(BrB"Br)-"(BrA"Br)" by cr [1/2, 1] and (*)
(BrAaBr)n-BrAaBrB (a+r)(-n)BrA’Br(BrAaBr)n-
(BrA"B r) "-BrA"Br+("+r)(a-’)A"B r(BrA’B r)

>_ (BrA’B r) "-BrA’Ar+(’+r)(a-’)A’Br (BrA"Br)"- by (1)
(BrA"B r) "-BrA"+r+("+r)(a-")Br(BrA"B r)

>- (BrA"Br)’-BrBZ"+2r+("+r)(a-z’)Br (BrAaBr) n-x
by (2)

(BrAaBr)’*-BrAaB (4r+,)+r+(a+r)(-,,)A,Br(BrABr),--(BrA’Br)"-BrA"A(4r+’)+r+("+r)(a-")A"Br(BrA"Br)"- by (1)

>-- (BrAaBr)n-BrA(r+a)(-)+r+za+(a+r)(a-2n)Br(BrAaBr)n- by (i) and (2)

>-- (BrAaBr)n-’BrAaB(ar+a)(’-)+r+(a+r)(-")AaBr(BrAaBr)"- by (1)and (2)

>-- BrA(4r+2’)(’-l)+a+r+(’+r)(-’)B r by (1) and (2)
BrABr >- B+ B(+) by Yn- 1 in (2).

Thus the proof of the first case (a) is complete.
(b) In the second case 2n + 1 <_ fl <_ 2(n + 1) for some natural number

no
(BrA’Br) (BrA’Br)"(BrA"Br)-" (BrA"Br) "

(BrAaBr)"BrAa/(Aa/BrAa/)t-z"-Aa/ZBr (BrAaBr) " by Lemma A
>_ (BrAaBr)nBrAa/2(Aa/ArAa/Z)-"-IAa/Br(BrAaBr)" by 27" [-- 1,0]
and (*)

(BrA"Br)"BrA"+("+r)(-’-)Br(BrA"Br) "
>- (BrAaBr)"BrB"+("+zr)(t-z"-)Br(BrA"Br)" by (3)

(BrA’Br)"-BrA"B4r+"+("+r)(-"-)A’B r (BrA’Br)’-_
(BrAaBr)"-BrA"A4r+"+("+zr)(t-"-)A"Br(BrA"Br)"- by (4)
(BrAaBr)"-BrA’+r+’+("+r)(-"-)Br(BrA"Br)

>- (BrAaBr)"-iBrB’+4r+"+(a+zr)(-"-)Br(BrAaBr)n- by (3)
(BrA"Br)"-BrA"Br+("+4r)I+"+(’+r)(-’-)A"B r (BrA’Br)"-

>- (BrAaBr)n-BrAaAr+(’+r)+"+("+r)(t-n-)A"Br(BrAaBr)"-2 by (4)
(BrA’Br)n-BrA(a+4r)+a+(’+r)(--n-)B r (BrA’Br)n-

>-- (BrA’Br)’-BrA(’+m+a+(’+r)(-’-x)Br(BrA’Br)’- by (3) and (4)
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(BrA"B)"-BrA"A("+r)(-)+r+"+("+r)(-"-)A"Br(BrA"B)-
Thus the proof of case (b) is complete.

Finally the proof of (iii) in Theorem 1 is complete together with case (a)
and case (b).
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