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7. The Diophantine Equation a* + b’ = &
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(Communicated by Shokichi [IYANAGA, M. ]J. A., Jan. 12, 1994)

§1. Introduction. In 1956, Sierpiniski [7] showed that the equation
3" + 4" = 5" has the only positive integral solution (z, y, 2)= (2, 2, 2).
And it is conjectured that if @, b, ¢ are a Pythagorean triplet, i.e. positive in-
tegers satisfying a’ + b> = ¢* then the Diophantine equation a” + b’ = ¢’
has the only positive integral solution (z, y, 2) = (2, 2, 2). It has been veri-
fied that this conjecture holds for many other Pythagorean triplets (cf.
Sierpinski[8], JeSmanowicz [3], Lu[4], Takakuwa and Asaeda [9], [10], Taka-
kuwa [11]. See also Terai [12]).

As an analogy of this conjecture, we consider the following:

Conjecture. Ifa, b, c, p, q, v are fixed positive integers satisfying a’ +
b* = " with p, q, v = 2, then the Diophantine equation
(1) a+bv=c
has the only positive integral solution (x, y, 2)= (p, q, 7).

We note that Scott [6] proved that if @ and b are relatively prime inte-
gers greater than one, and if ¢ is prime, then the equation a” + b’ = ¢ has
at most two solutions in positive integers (x, y, z) when ¢ # 2, and at most
one solution (x, y, 2) when ¢ = 2, except for two cases (taking a < b) :
(a, b, )= (3,5, 2), which has exactly three solutions (z,y,2)= (1,1, 3),
@3,1,5), ,3,7 and (a, b, 0 = (3, 13, 2), which has exactly two solu-
tions (x, y, 2= (1, 1, 4), (5, 1, 8) (cf. Guy [2], section D9, p. 87).

In this paper, we consider the above Conjecture when (p, q, ») = (2, 2, 3).
We shall prove that the above Conjecture holds for certain a, b, ¢ satisfying
a+ b =cas specified in Theorem in §2. We shall also give some exam-
ples of a, b, ¢ satisfying the conditions of Theorem.

§2. Theorem. We first prepare some lemmas.

Lemma 1. The integral solutions of the equation a®+ b =" with
(a, b) = 1 are given by

a=tTu@w®—30"), b=+ v —3ud), c=u’ +
where u, v arve integers such that (u, v) = 1 and u # v(mod 2).

Proof Ifa=b=1(mod2),thenl+1=a"+ b= c*=0 (mod4),
which is impossible. So a # b (mod 2) since (a, b)) = 1. It follows from
a® + b® = ¢’ that

a+ib=1i(u+ i)’
for some integers #, v such that (#, v) = 1 and # # v (mod 2). Since { =
(— 9> the " can be absorbed in (# + iv)®. Therefore we have a = * u(u’
—3v), b= =% v — 3u’) and c = " + o°.
Conversely the above a, b, ¢ satisfy @ + b° = ¢* and (a, b) = 1.
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In the following, we consider the case u = m, v = 1; i.e.
(2) a=mm’—3),b=3m"—1,c=m*+1,
and
m is even.
Lemma 2. Let a, b, ¢ be positive integers satisfying (2). If the Diophantine
equation (1) has positive integral solutions (x, y, 2), then x and y are even.

*
Proof. We first show that (%) = — 1 and <%) =1, where (—*">

denotes the Jacobi symbol.

a) _ <m(m2 - 3)) _

Using the quadratic reciprocity law, we have <—b- 2
3m"— 1

<3m2m_ 1)-(3":;2__31> = (szm_ 1)( ). Note that if m = 0 (mod
P and tis odd (> 1), then <§7?£_—1—> = 1. In fact, 3m° — 1 = — 1 (mod
4), and (3m2t_ 1) = <3m2t_ 1) = <—t1> =1 if t=1(mod4), and
2
(5'1-}_—1) - (EZ"—t:—l—) = — <:71—> =1ift=—1 (mod4).
Put m=2%(s=>1 and ¢ is odd). If s=1, then (ﬁ) =

m’ — 3

b
<3m22t_ 1>.<m22— 3> = (3m22—- 1>.(m22— 3) =(—1)- 1= —1 since
m =4 (mod®). If s22 then (%)= (szz_ 1)-(m22_ 3) =1
(—1) = — 1 since m* =0 (mod 8). We also have <%) = (;7%) =

(o) - (28 -
m’ + 1 m® + 1 '

Hence a” + b* = ¢° implies that (— 1)* =1, so x is even. Then we
have (— 1)’ = 1(mod 4) since £ = 2. Thus ¥ is even.

Lemma 3. Let a, b, ¢ be positive integers satisfying (2). Suppose that there
is a prime | such that m”> — 3 = 0 (mod I) and e = 0 (mod 3), where e is the
order of 2 modulo l. If the Diophantine equation (1) has positive integral solutions
(x, y, 2), then z = 0 (mod 3).

Proof. Tt follows from (1) and (2) that 8 = 4° (mod /) since m’ = 3

(mod ).

Hence we have 27 = 1 (mod ), so 3y — 2z = 0 (mod ¢). Therefore z
= 0 (mod 3).

Remark. If m° — 3 =0 (mod /), then/=1, 11 (mod 12). If e=0
(mod 3), then / = 1 (mod 3). Hence we must have / = 1 (mod 12).

Lemma 4. (a) (Nagell) Let # be an odd integer = 3, and let A be a
square-free integer = 1. If the class number in the field Q(— A) is not divisi-
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ble by n, then the Diophantine equation Az +1 = y" has no solutions n inte-
gersx and Y fory odd = 1, apart fromx = £ 11, y=3 forA=2 and n =5
(cf. Nagell [5], Theorem 25).
(b) (Mahler) Let D be a positive integer > 1 which is not a perfect square, and
let C be a square-free divisior of 2D and | C| # 1, D.

Let U and V be positive integers satisfying the equation

(3) U*—DVi=_C.
If all prime factors of V divide D, then we have i) U= U,, V=V, or (ii) U =
U+ 3U,V/D 3UXV,+ DV,
. C |1 = v= 1 |IC| L where U, and V, denote the least positive
integral solution of (3). The numbers U and V in (ii) are determined by the
+ U, + VD3
formula Ul ,/EV‘F = [ 1[ \/Elr/—_] (cf. Nagell [5], Theorem 16).

We use Lemma 4 to show the following:

Lemma 5. Let a, b, ¢ be positive integers satisfying (2) and let b be prime.
Then the Diophantine equation

aZX + bZY — C3Z

has the only positive integral solution (X, Y, Z)= (1,1, 1).

Proof. 1t follows from Lemma 1 that we have

a =+ ut® — 309, 0" = £ v = 3ud), & =u’ +

where (#, v) = 1, u is even and v is odd, since b is odd.

Since b is prime, we see that
(4) v==%b", 0" -3 ==%1
or
(5) v=i1,v2—3u2=iby.
We first consider (4). Then we have
(6) 3u” £ 1 =0p".
The — sign must be rejected since — 1 = (")? (mod 3) is impossible. If ¥
is even, then 3u’ + 1 = B* (with B = b?) has no solutions. In fact, 3u’ =

2 2

(B® + 1)(B® — 1) implies that —li—éﬂ = h® and B—z——l— = 3k® where
u = 2hk. Hence B* = h* + 3k” and 1 = h* — 3k”, so B* = h* — 9k’, which
has no non-trivial solutions by the method of infinite descent (cf. Dickson
[1], p. 634). Therefore Y is odd. So it follows from Lemma 4.(a) that if (6)
has positive integral solutions, then ¥ = 1. If ¥ =1, then we have 3u’ =
b+ 10B—1) =3m"@Bm’ —2), so u’=8m’6m’ — 1) (with m = 2m,),
which is impossible.

We next consider (5). Then we have
(7) 3u” — 1= b".
If Y is even, then — 1= (b%)2 (mod 3), which is impossible. Hence Y is
odd. If Y= 1, then we have b=3u"—1=3m° — 1, sou=tm, Z=1
and X =1.1f Y> 1, then put Y=2x + 1 (» = 1). Then from (7) we have

(Bu)* — 3b(6")* = 3.

Since b = 3m® — 1, the least integral solution of U?—3bV? =3 is given
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by U, = 3m, V; = 1. Hence it follows from Lemma 4.(b) that we have (i)
3u = 3m, b" =1 or (ii) 8" = 9m” + b = 4b + 3, which are impossible.
Combining Lemmas 2, 3 with Lemma 5, we obtain the following theorem:

Theorem. Let a = m(m® — 3),b= 3m*—1,c=m" + 1 with m even
and let b be prime. Suppose that theve is a prime | such that m’ — 3 = 0(mod I)
and ¢ = 0 (mod 3), where e is the order of 2 modulo l. Then the Diophantine
equation a® + b* = ¢ has the only positive integral solution (x,y, 2= (2, 2, 3).

Finally we give some examples satisfying the conditions of Theorem.

Table. m(< 100), a, b, c, I, e satisfying the conditions of Theorem

m a b c l e
4 52 47 17 13 12
8 488 191 65 61 60
14 2702 587 197 193 96
22| 10582 1451 485 13 12
26| 17498 2027 677 673 48
30 8970 2699 901 13 12
34| 39202 3467 1157 1153 288
48 | 36816 6911 2305 13 12
52| 140452 8111 2705 37 36
58 194938 | 10091 3365 3361 168
60 6540 10799 3601 109 36
74| 405002 16427 5477 13 12
92| 778412 | 25391 8465 8461 1692
96 | 294816 | 27647 9217 37 36

It seems that there are infinitely many m satisfying the conditions of
Theorem. But it is difficult to show this.
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