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{}1. Introduction. In 1956, Sierpifiski [7] showed that the equation
3x q- 4 5z

has the only positive integral solution (x, y, z)= (2, 2, 2).
And it is conjectured that if a, b, c are a Pythagorean triplet, i.e. positive in-

b z
tegers satisfying a -t- --c, then the Diophantine equation aX+ b-c
has the only positive integral solution (x, y, z)-- (2, 2, 2). It has been veri-
fied that this conjecture holds for many other Pythagorean triplets (el.
Sierpiflski[8], Jemanowicz [3], Lu[4], Takakuwa and Asaeda [9], [10], Taka-
kuwa [11]. See also Terai [12]).

As an analogy of this conjecture, we consider the following:
Conjecture. If a, b, c, p, q, r are fixed positive integers satisfying a

b c with p, q, r >_ 2, then the Diophantine equation
(1) a + b c
has the only positive integral solution (x, !t, z)= (p, q, r).

We note that Scott [6] proved that if a and b are relatively prime inte-
gers greater than one, and if c is prime, then the equation ax -k b- c has
at most two solutions in positive integers (x, //, z) when c =/= 2, and at most
one solution (x, //, z) when c 2, except for two cases (taking a < b)
(a, b, c)= (3, 5, 2), which has exactly three solutions (x, g, z)= (1, 1, 3),
(3, 1, 5), (1, 3, 7) and (a, b, c) (3, 13, 2), which has exactly two solu-
tions (x, //, z)= (1, 1, 4), (5, 1, 8) (cf. Guy [21, section D9, p. 87).

In this paper, we consider the above Conjecture when (p, q, r)= (2, 2, 3).
We shall prove that the above Conjecture holds for certain a, b, c satisfying
a + c as specified in Theorem in 2. We shall also give some exam-
ples of a, b, c satisfying the conditions of Theorem.

2. Theorem. We first prepare some lemmas.
Lemma 1. The integral solutions of the equation a+ b c with

(a, b) 1 are given by
2a= +-- u(u 3v), b= + v(v 3u), c= u + v,

where u, v are integers such that (u, v) 1 and u v(mod 2).
Proof If a-- b-= 1(rood2), then 1+ 1 --= a+ b= c= 0 (rood4),

which is impossible. So a b (mod2)since (a, b)--1. It follows from
b ca + that

a + ib i
,
(u + iv) a

for some integers u, v such that (u, v) 1 and u v (mod 2). Since
/" 2(_ i)a the can be absorbed in (u+ iv) a

Therefore we have a= + u(u
ave), b + v(v 3u) andc= u +v.
Conversely the above a, b, c satisfy a q- c and (a, b) 1.
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In the following, we consider the case u m, v 1; i.e.

(2) a=m(m- 3), b=3m- 1, c= m+ 1,
and

m is even.
Lemma 2. Let a, b, c be, positive integers satisfying (2). If the Diophantine

equation (1) has positive integral solutions (x, y, z), then x andy are even.

Proof We first show that (-)---1 and (-)- 1, where (--)
denotes the Jacobi symbol.

Using the quadratic reciprocity law, we have
:3 --1

2m ).(. :3)=( m .).(m ). Note that if m 0 (mod(3m- 1 3m- 1 3m- 1 --3

t) and t is odd(> 1), then
m--I

1. In fact, 3m- 1 l(mod

4) and ( t )= (3m- 1) (--1)
3m- 1 t t 1 if t---- 1 (mod4), and

t. )=_(3m--1 --1(3m, 1 t: )=-- ( t)=lift----l(mod4’
Put m 2st(s-> 1 and t is odd). If s 1, then

(--1)--- 1 since m =--O(mod8). We also have
3m 1

4

me+l +1
z -1, so x is even. ’Then weHence az+ bu- c implies that (-- 1) x

have (-- 1) u l(mod 4) since x -> 2. Thus y is even.
Lemma 3. Let a, b, c be positive integers satisfying (2). Suppose that there

is a prime l such that m 3 ------ 0 (mod l) and e 0 (mod 3), where e is the
order of 2 modulo l. If the Diophantine equation (1) has positive integral solutions

(x, y, z), then z =-- 0 (mod 3).
Proof. It follows from (1) and (2) that 8*= 4 (rood/)since m ---3

(mod l).
Hence we have 2a*-ez 1 (mod/), so 3y- 2z 0 (mode). Therefore z

0 (mod 3).
Remark. If m --3 0 (modl), thenl= 1, 11 (mod12). If e= 0

(mod 3), then l 1 (mod 3). Hence we must have l 1 (mod 12).
Lemma 4. (a) (Nagell) Let n be an odd integer

_
3, and let A be a

square-free integer

_
1. If the class number in the field Q(/- A) is not divisi-

2 2 22t ).(m )_ (. ).(.me )= (--1,. 1=--1 since
3me- 1 --3 3me- 1 3

)2
m -=4(mod8). If s >-2, then

m e 1
3 --1 m --3
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b le by n, then the Diophantine equation Ax + 1 yn has no solutions in inte-

gers x and y for y odd >-- 1, apart from x +- 11, y 3 for A 2 and n 5
(cf. Nagell [5], Theorem 25).
(b) (Mahler) Let D be a positive integer > I which is not a perfect square, and

let C be a square-free divisior of 2D and C =/: 1, D.
Let U and V be positive integers satisfying the equation

(3) U- DV= C.
If all prime factors of V divide D, then we have (i) U U1, V VI or (ii) U

U: + 3UIV:D 3U: V 4-
[C[ V= C[ where U and V denote the least positive

integral solution of (3). The numbers U and V in (ii) are determined by the

u + vC-D [ u, +I/-1 If-[ ] (eL Nagell [5], Theorem 16).form la

We use Lemma 4 to show the following:
Lemma 5. Let a, b, c be positive integers satisfying (2) and let b be prime.

Then the Diophantine equation
a + =C

has the only positive integral solution (X, Y, Z) (1, 1, 1).
Proof It follows from Lemma 1 that we have

x + v(vz 3u),c =u +v,a u(uz 3vZ), br z

where (u, v) 1, u is even and v is odd, since b is odd.
Since b is prime, we see that

(4) v +/- b r u,v --3 =+_1,
or
(5) v= +-- 1, v- 3uz= +_ b r.

We first consider (4). Then we have
(6) 3u+ 1 b2r.
The sign must be rejected since i (br) (mod 3) is impossible. If Y
is even, then 3u + 1 (with B b) has no solutions. In fact, 3u-B + 1 B- 1

h(B + 1)(B2- 1) implies that 2 and 2 3kz’ where

u 2hk. Hence B h + 3k and 1 h 3kz, h*so B 9k* which
has no non-trivial solutions by the method of infinite descent (cf. Dickson
[1], p. 634). Therefore Y is odd. So it follows from Lemma 4.(a) that if (6)
has positive integral solutions, then Y= 1. If Y= 1, then we have 3uz=

2(b+ 1)(b-- 1) 3m2(3mz-2), so u =8m(6m-- 1) (with m=2ml),
which is impossible.

We next consider (5). Then we have
(7) 3uz- 1 b ’.
If Y is even, then --1----(b) (mod3), which is impossible. Hence Y is

odd. If Y 1, then we have b 3uz- 1 3mz- 1, so u +-- m, Z 1
and X 1. If Y > 1, then put Y = 2n + 1 (n _> 1). Then from (7) we have

(3u)z- 3b(b’*)- 3.
Since b 3m 1, the least integral solution of U 3bV 3 is given
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by U1 3m, V1 1. Hence it follows from Lemma 4.(b) that we have (i)
bn bn3u 3m, 1 or (ii) 9m2 + b 4b -t- 3, which are impossible.

Combining Lemmas 2, 3 with Lemma 5, we obtain the following theorem:
2Theorem. Let a rn(rn- 3), b 3m- 1, c m + 1 with m even

and let b be prime. Suppose that there is a prime 1 such that m- 3 0(mod 1)
and e =-- 0 (mod 3), where e is the order of 2 modulo I. Then the Diophantine
equation ax - b c has the only positive integral solution (x, y, z)- (2, 2, 3).

Finally we give some examples satisfying the conditions of Theorem.

Table. m((100), a b, c, l, e satisfying the conditions of Theorem

m
4
8
14
22
26
30
34
48
52
58
60
74
92
96

52
488
2702
10582
17498
8970
39202
36816
140452
194938
6540

405002
778412
294816

47
191
587
1451
2027
2699
3467
6911
8111
10091
10799
16427
25391
27647

17
65
197
485
677
901
1157
2305
2705
3365
3601
5477
8465
9217

e

13
61
193
13
673
13

1153
13
37

3361
109
13

8461
37

12
60
96
12
48
12
288
12
36
168
36
12

1692
36

It seems that there are infinitely many m satisfying the conditions of
Theorem. But it is difficult to show this.
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