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Introduction. Let n, k, 1, x be integers greater than 1. Erdts [4]
showed that if k > 3, then the Diophantine equation

(1) (n)k x (n 2k)

has no solutions, and conjectured that if l _> 3, then the equation (1) has no
solutions (cf. Guy [6], section D17, p. 97). The condition n _> 2k involves no

loss of generality since (n) ( n )k n--k
On the other hand, it is well known that the equation (n)2 x has

infinitely many solutions and that the only solution of the equation
3

x

is 50, x 140, as shown by Watson [14] and Ljunggren [8] independ-
ently (cf. Guy [6], section D3, p. 82). In 1974, Tijdeman proved, by means of
Baker’s method, that the remaining equations

(2)
2

x (1 _> 3)

and

(n)(3)
3

x ( > 3)

have only finitely many solutions respectively and these can be effectively
determined, which follows immediately from the following:

Theorem (Tijdeman [13]). Let P(x) be a polynomial with rational coeffi-
cients and with at least two simple rational zeros. If m 2 we further assume
that P has a third simple zero. Then the equation

y P(x)
has only finitely many solutions in integers m 2, x

_
1, y -- 2 and these can

be effectively determined.
But Tijdeman gave explicitly no upper bounds for solutions of (2) and

(3).
The purpose of this paper is to give explicit upper bounds for these

solutions, by use of the recent results concerning Baker theory. Indeed, we
prove the following:

Theorem 1. All solutions of the equation (2) satisfy
10172l< 4250 and x< e

Theorem 2. All solutions of the equation (3) satisfy
3o101721<4250 and x< e

In {}3, we shall show that some other methods than Baker’s can also be
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used for treating the equation (2).
1. Proof of Theorem 1. Suppose that the equation (2) has solutions.

n(n- 1)
Then we have 2 x, so

n x n 2x:
Or-- 1 2x n-- 1 x

where x, x are positive integers with x "-xxe. Subtracting both sides
respectively yields
(4) X- 2Y:= +__ 1,
where X- x, Y-- x. or X-- x, Y x. We note that since x-- xx., we
have

x<X.
Using now Baker theory, we give upper bounds for solutions of (4). We

first prepare two lemmas.
Let c be an algebraic number of degree d with the minimal polynomial

d,
d d-1

aoX + alx + + ad ao I-[ (x--
iff

where the ai’s are relatively prime integers with ao > 0 and the ci’s are
conjugates of c. Then

1 d

h(a) - (log a0 + log max(l,

is called the absolute logarithmic height of c. In particular, if c Q, say a
p/q as a fraction in lowest terms, then we have

h() log max(I p I, q

Lemma 1 (Maohua [9]). Let 01, 02 be real algebraic numbers with c -- 1,
c -- 1, and let D denote the degree of Q(c, a2). Let b, b2 be positive integers,
and let b b/Dh(c2) + b2/Dh(c). Further, let T be any number satisfying
1 K T K 0.52 + log b. If A bl log a b2 log a2 0, then we have

T (c) h (c.) (0 52 + log b) 2}.
Lemm 2 (Gy6ry and Papp [7]). Let f(x, ) be an irreducible binary form

with integer coefficients and degree d >- :3. Let m be a non-zero integer. All in-
tegral solutions x, y of the Thee equation

f(x, ) m
satisfy

log max(t x I, Y I) 10d6 log(HM),
where M m and H is the maximum absolute value of coefficients off(x, y).

We use Lemmas 1,2 to prove the following:
Proposition 1. All solutions of the equation (4) satisfy

5.10171l< 4250 and Y X < e

Proof. The equation (4) clearly has a solution X- 1, Y-- i and no
solution X- 2. Thus we may assume that X 2.

From (4), we have
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2Y 1
-=-1+

X X"
1

Recalling that if crl < then log(1 4- or) <_ 2 cr I, we obtain

(5) llog --log2 _<-v.
On the other hand, since we may choose T 9 if I- 4000, it follows

from Lemma 1 that

(6) I log (----) --log2-I_ exp {-- 71.8(1og X)(log 2)(0.52 + log b)},
where b //log 2 + 1/log X. Combining (5) with (6), we have

llogX--log2 <_ 71.8 (IogX)(log2) 0.52 +log log2 + logX
SO

l
2 1)]2+1l < 71.8 (log 2)t0.52 + log \log +

Hence we obtain 1 < 4250.
It follows from Lemma 2 that

log max(X, Y) _< 10:Sl log 2

< 5" 10.
10171

Therefore we have Y <-- X < e This proves Proposition i.
Since x < X, Theorem I follows easily from Proposition 1.
2. Proof of Theorem 2. Erd6s [4] proved that if the equation (i) has

solutions, then we have
n- i cix

for all with 0 i < k, where the c’s are 1,2, k in some order and the

’s are positive integers with z z_.
Hence, if the equation (3) has solutions, then there are positive integers

r, s, t with st such that
n-- r=Zr, n-- s= 2z2, n-- t=3,

where r, s, t are distinct inters with 0 r, s, t < 3. Thus we have zr
2 s r 1 or 2. Therefore we obtain
(4) X’--2Y’= 1
or

(7) X’-- 2-Y’= -- I,
where X Xr, Y= x or X= xs, Y= Xr/2. We note that sincex= XrZs
< xr, we have

x<X3orx< (2 I0 3

according as (4) or (7).
As we gave upper bounds for solutions of (4) in Proposition 1, the fol-

lowing proposition gives those of (7).
Proposition 2. All solutions of the equation (7) satisfy

10il< 4250 and X< 2 Y < e

Proof. From (7), we have
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2X 2
=1+

(2Y) (2Y)"
By the same way as in the proof of Proposition 1, we obtain < 4250.

Since the equation (7) becomes (2Y)- 2X-+/- 2, it follows from
Lemma 2 that

log max (X, 2Y) <_ 101/s log 4
< 107.

el0172Therefore we have X < 2 Y < This proves Proposition 2.
Since x < X3

or x < (2Y) according as (4) or (7), Theorem 2 follows
easily from Propositions 1,2.

3. Supplementary remarks. We used above Baker theory, i. e. that of
linear forms in the logarithms of algebraic numbers to obtain upper bounds
for solutions of the equation
(4) X- 2Y= +/- 1.
We remark in this section that the following methods can also be used for
treating (4).

{i) Quadratic reciprocity laws. We first note that the equation (4) can be
written as

X +y =Z,
wherex= +X,y= y2 yt,z=+ +1.

Rotkiewicz [10] showed the following theorem, applying Jacobi’s symbol
to Lehmer’s numbers and using quadratic reciprocity laws.

TheoremA. Let (x, y) 1 and l be a prime > 3. If l z, 2 X z or l X z,
21z, then the equation x + y z has no solutions.

This implies the theorem of Terjanian [12] which states that the first
case of Fermat’s Last Theorem for even exponents is true. We easily see that
if l[ (Y+/- 1), 21Y or 1 (Y+_ 1), 2 Y Y, then the equation (4) has no
non-trivial solutions.

(ii} Cyclotomi fields. By factoring the equation x 4-y 2 in the
cyclotomic field Q(), Dnes [2] obtained the following:

Theorem B. Let be a regular prime. Suppose that the order of 2 modulo
l-- 1

_
is even or 2 If2
2z has no non-trivial integral solutions.

It follows from Theorem B that if 1 is any prime < 31, then the equa-
tion (4) has no non-trivial solutions.

{iii} Diophantine approximation. Domar [3] showed the following

theorem, using a result concerning Diophantine approximation by Siegel [11]
whose proof depends upon properties of hypergeometric series.

Theorem C. Let a, b be positive integers and >-- 5. The equation ax
by +/- 1 has at most two solutions in positive integers x, y.

This implies that the equation (4) has at most one solution, apart from X
1, Y= 1 (for fixed l).

{iv) Elliptic curves. Recently Darmon [1] has proved the following

theorem, applying Frey’s idea [5] which reduces Fermat’s Last Theorem to a
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problem of certain elliptic curves.
Theorem D. Let 1 > 13 be prime. If the Shimura-Taniyama conjecture is

true, then the equation x + yt z has no non-trivial solutions when
l-= l(mod 4) and (x, y, z) 1.

It follows from Theorem D that if the Shimura-Taniyama conjecture is
true, then the equation (4) has no non-trivial solutions when l (mod 4).
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