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Introduction. Let p be a prime and k an integer. In 1940, Hecke stu-
died a representation of SL,(Z/pZ) which is realized in the space of modu-
lar forms of level p and of weight k and obtained beautiful results.

In this paper, we study a similar representation m,,,,, which is realized
in the space of cusp forms of level 4p and of weight k + 1 /2. In particular,
we study in detail the subrepresentation p, generated by Hecke common
eigenform f of level 4p (“newform”). Then we have some completely different
facts from the results in the case of integral weight. For example, o, is al-
ways irreducible, and if f is of Neben-type, whether o, is “residual” or
“non-residual” (cf. below (1.2)) is determined by the Atkin-Lehner involution
W(p) (cf. Theorem (4.1) for the details).

Finally, we remark that the class number of Q(Y— p) also occurs in our
results as in the classical work of Hecke (cf. Remark(4.2)).

§0 Preliminaries. Throughout this paper, we keep to the notation in
[4]. In particular, we use the following general notation.

Let k denote a positive integer and p an odd prime number. If z € C
and £ € C, we put z° = exp(x - log(z)) with log(z) =log(lz]) +v—1
arg(z), arg(z) being determined by — 7w < arg(2) < 7. Also we put e(z) =
exp(2m/— 12).

Let $ be the complex upper half plane. For v = (‘; 3) € I,(4) and

. .. . —1\"2/¢ 172

z € 9, we define function j(y, 2) on O by: j(r, 2 = (T) (E) (cz+ ).
Let &(k + 1/2) be the group consisting of pairs (&, ¢), where a = (‘; Z)

€ GL,;(R) and ¢ is a holomorphic function on § satisfying ¢(z) =
t(det @) ~***(cz + d)**? with t € C and | t| =1. The group law is de-
fined by: (a, ¢(2)- (B, ¢@) = (aB, ¢(B2)¢(2)). For a complex-valued
function f on $ and (a, @) € &(k + 1/2), we define a function f| (a, @)
on § by: f| (a, ¢) (2) = ¢(2) 7 'f(a2).

§1. For a positive integer N, we put GN) := SL,(Z/NZ), B(N) :=

at b _[(1 b
(¢ ?) e e} van:=[(; 7) = Baw).

Denote by £ the lifting I,(4) v+~ 1™ = (7, j(r, 2®*"). Then we put
for an odd prime p, A(4p) := L(I'4p)), A,(4p) := LI (4p)), and A4,(4p)
=% (,(4p)). Moreover, by S(k + 1/2, A(4p)), we denote the space of all
cusp forms of weight £k + 1/2 with respect to A(4p).
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For an even character x modulo 4p, define a subspace of S(k + 1/2,
A(4p)) by:
fe Stk +1/2,A4p) ; fly* = x(df
Stk +1/2,4p, x) :=

for any 7y = (‘Z Z) € I,(4p)

Since S(k + 1/2, 4p, x) = {0} for each odd character X, we consider only
even characters.

Since A4(4p) is a normal subgroup of 4,(4) := £(I,(4)), we get a rep-
resentation 7., of A4,(4)/A4p) = B(4) X G(p) on S(k+ 1/2, A(4p))
defined by:

[Tyer), (r mod 4p)1 f=f| ¥, f€ Stk +1/2, A(4p)), v € IL,4).

For f€ Stk +1/2, A(4p)), let oy denote the subrepresentation of
T..1/2 generated by f, ie., we set o, 1= Fly*:rer, 4)) .

For any non-zero f € S(k + 1/2, 4p, x), we study thls representation
p; By restricting m,,,,, Cf is a one-dimensional representation space of
B(4) x B(p) = A,(4p)/ A(4p). We denote this representation by x. We
also set the representations x, and x, by:

-1 -
1 B® = (" )@ 4 Be) 2 (4 0) @7

where x, (resp. x,) is the 2 (resp. p)-primary component of x. Then x = x,
@ Xy

Moreover we can define a surjective homomorphism between B(4)
X G(p)-modules: Indpape X = x; ®Indgd) x,—~ 0, by ZaE®fr
ST, © f (2. € C, £ € (B&) X Go)/(B@) x B(®)), From this,
we can identify o, with a B(4) X G(p)- submodule of x, & IndB((f)) Xp

As to the representation x, ® IndB(,,) Xp, the followmg assertion is
well-known.

Proposition (1.1) ([3, Chapter 7, pp. 54-60]). (1) If xz #* 1(e x,,z #* 1),
X @ Indg&‘,’: Xp is an irreducible representation.

(2) If x = 1 (the trivial 7epresentation),

1®Indgr1=01Q01) B ARE,).

Here, €, is an irreducible representation of G(p) of degree p which is called

Steinberg representation.

3) If x = <£> (Kronecker symbol),

G ,
2@ Indgg %, = U@ Chpinn) @ (X, @ Clyyy ).

Here €,y and §€,,,,,, denote irreducible representations of G(p) of de-
gree (p + 1)/2, which are not equivalent to each other and satisfy the following :
(1.2)

@(p+1)/2| Up) = ¢, (®aeFx2¢a (S‘/(p+1)/2‘ Up) = ¢, (@aeF},‘—F;z¢'a)’
_— 1 u

where for any a € F,, we define ¢, € UP) by: gba(( 0 1>> = ¢(au) and

¢(xmodp) =e(x/p) (x € Z). We call €y, (vesp. €,,),,) the residual

(resp. non-residual) representation.
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Corollary (1.3). For any non-zevo f € S(k + 1/2, 4p, x),

xz®lndgfﬁ;_a, ifFx’# 1,

’ 4 . — p
?_C;®(“5(p+wz’ Lg® Clpsnrr2r (2_(=2®@(p+1)/2) D (Q®@(p+1)/z)r X = <_>
§2. Now, we shall study the cases of x = 1 and <£> in detail. From

now on until the end of this paper, we fix x = either 1 or <2>
For any a € F,, take {, € SL,(Z) such that

(53) @moda

(—01 (1)> (}) ‘1l> (mod ).

The set {{,*|a€ F,} U {«(1) (1)>, 1>] gives a complete system of

representatives of 4,(4p)\ 4,(4). Then define an operator X ™ on S(k + 1/2,
AWp) by: fI X* 1= Z,ep £,

Proposition (2.1). We assume that x = either 1 or (ﬂ) Put g, =

/(;1>P For a non-zero f € S(k + 1/2, 4p, x), the following hold.
(1) X™ induces an operator on Sk + 1/2, 4p, %).
e |O- DX +pf, rx=1,
@XT= (= 2= (2)
p pf9 1fx = .

(3) oy is irreducible < f is an eigenform ofX*.
(4) Let x = 1. Then

{ple®1 e flX*=pf,
0,21R€6, © flX*=—7.

G =

(5) Let x = <£> Then
[P =, €, © flx* ('—_’1_>9pf’
0rEX ®@(1»1)/2 e flx* <—p1>9pf‘

*
Proof. (1) From easy computation, we have f|X* <(1) }) =f|X

since 4,4p) = {a@p, (1 1) D, 1x* € St + 172, 4,4p). The
a O
assertion follows from checking the action of any element << )

b 0 a/’
(O b'1>> € B(4) X B(®) on f| X*.

2) FIX™ =%, ,ep f1 £*C". We divide the right-hand side into two
parts S, (the part of @ = 0) and S, (the part of @ ¥ 0). Then from easy com-
putation, S, = px,(— 1) f and S, = (p — 1) f]| X™* or 0 according to x = 1
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(3) Assume that o, is irreducible. Then 1= <p, x,® Indgt
X Bwxew = $O0flBwxBwX) Bwxpsw. From (1), we have g: —f|X €
Sk +1/2,4p, x) N p,. If g+ 0, both Cf and Cg give the subrepresentatlon
x of o, |pwxpp- Hence Cf= Cg Next, we assume that f| X™ = Af(1 € O).
Then dim p, = dim<f, f| ¥, ace F,>- < p. From this and Corollary
(1.3), p, is irreducible.

(4) Let 0,=1XC,. g=f+ flx*= 27*540(41:)\ A, flr* s 4,(4)-
invariant. Hence if g # 0, Cg is a B(4) X G(p)-submodule of p, which is
isomorphic to 1® 1. Therefore we have g = 0. The assertion for
1® 1 is trivial.

The contrary easily follows form the above, (3), and Corollary (1.3).

(5) For any u# € F,, put f,:= Zaep e(— ua/p) f| Ca* € o, From

similar computation to (2), f, IX* =( )pf+< )g,,f| * I f, #0,

Cf, gives the subrepresentation X2 X gb( « of 0y |B<4>qu:>
Let 0, = x, ® €,y Then n f|X*=Af( € C) by (3). Take u such

that <;p£) = — 1. From the condition (1.2), we have f, = 0. Hence 0 =

-1 1
£l xX*= (T> (» — g,4) f. Therefore A = <T) 85 As to X, @ Cyiyy e,

we can verify in the same way. The contrary is easily shown from the above
results and Corollary (1.3).

§3. Now, we shall characterize irreducibility of o, in terms of Fourier
coefficients of £ We introduce the operators U(p), W(p), Y,, and Hecke
operator T = Tkﬂ/zvu,‘l(nz) from [4]. See [4, 80 and §1] for the defini-
tions of these operators.

Let f€ S(k+1/2, 4p, x). Since f| W(p) = f| C()**((g 2>’ p—k/2—1/4>

L k/2-3/4 10 wesd) (1 a\*
and f| U@) = p Zier, /| ((0 p),p ) <0 1) (4, pp. 151-152)),
we have f| X*=p Dl W@ U@ and f| U(p)X*=x,,(‘ 1)
—1
(5) s nue.
Put g:=f| U(). Observing that the map f+— f| U(p) gives an
isomorphism from S(k+ 1/2, 4p, x) onto S(k +1/2, 4p, x<£)> (4,

—k/2+3/4 (—
X»

Proposition (1.28)]), g| X*=ig Qe O) & f| Y, = x,(— 1) ( )/If

1tx=1,¢=FlU® € S(k+1/2 4p, (2)) and 2= 2 (_71) o

Then the following follows from [4, Proposition (1.29)].
Theorem (3.1). Let (0 #) f= 2,. ,aw)e(nz) € S(k+1/2, 4p, 1).
Then f| U@p) = 2,5, a(pn)e(nz) and
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(o
Orvm E O Cpryy © aln) =01f( > )= -1,

4 . - n
Orluvp = 2®@<p+1>/2 S aln) =0 1f( ) ) =+ 1.

Heve, 0 is the 2-primary component of Kronecker symbol <£>

§4. In the case of integral weight, a Hecke eigenform f with p, =
€ 41,2 1s very special, in fact, such f corresponds to a Grossencharacter of
Q(/— p). In our case, a Hecke eigenform f with 0, = x, ® €4y, or X, &
€41y, 1s also a little special in the following sense.

We introduce the following subspace which is called Kohnen space.

_f=2,sawenz) € Sk +1/2, 4p, x) ;
S +1/2,4p, Ok = {a(n) =0 if x,(— 1 (— D*n = 2,3 (mod 4)}'
We recall that we have a theory of newforms for Kohnen spaces (cf. [1], [4]).

Let @™ (k + 1/2, 4p, X) g be the space of newforms. See [4, §3] for the
defintion. The space is denoted by Sey1/2(®P, X, in [1]. From [4,§3], we know
the following: S(k + 1/2, 4p, x)x = &"*(k + 1/2, 4p, x) D& "k + 1/
2,4, VDS (k+1/2,4, )| Up®) ; Both & (k + 1/2, 4p, x)x and
&"(k + 1/2,4, x)x have C-basis consisting of common eigenforms
for all T(% (I :prime, [ # p); & (k + 1/2, 4p, x)x and &"*(k + 1/2, 4,
WO DSk +1/2, 4, )| UP® correspond to the spaces S°(2k, p)
and S(2k, 1) respectively via Shimura correspondence; "™k +1/2, 4p,
x)x is stable under the operators U(®?) and T(n®) with (n, p) =1 ((4,
Theorem (3.9-10)]). We also claim that X* and Y, fix the space " k+1/
2, 4p, x) . This follows from [4, Theorem (3.10-11), Propositions (1.20) and
(1.28)] and [2, Theorem 4.6.19].

Theorem (4.1). Let (0 #)f€ &"“(k + 1/2, 4p, x)x be a common
eigenform for all T(I%) (I : prime, | # p). Then we have the following.

(1) o, is always irreducible.

2) Ifx =1 thenp, =1QE,.

3) If x = <£> then
—_ 1 k-1
o = Z,;® Cpine & Gl W) = (T) G;
— 1 k—1
0= L®Cpun & GIWE) =~ (57) 6.

Heve, W(p) is the Atkin-Lehner involution on S(2k, p) (see [4, p. 5]) and G is
the primitive form € S°(2k, p) which corresponds to fl| UP) ™" =1 g in the
sense of [4, Theorem (3.11)(1)] (via Shimura Correspondence).

Proof. (1) X* commutes with all Hecke operators 7%, (n, 2p) =1
({4, Proposition (1.20)]). Then from the strong multiplicity one theorem ([4,
Theorem 3.11)]), f is also an eigenform of X™ and hence Oy is irreducible.

(2) Suppose that o, = 1® 1. Then f| 7™ =ffor all v € I,(4). Since
Stk+1/72,4, 1) N S(k+1/2,4p, D)= Sk +1/2,4, Dg= &"(k +
1/2,4, Dy, fEG" (k+1/2,4, 1), NG (k+1/2, 4p, 1), = (0}. This
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is a contradiction.

(3) From [4, (3.3), Propositions (1.20) and (3.8), Theorem (3.11)], we
can show that g:=f| U@ " € &"*(k+ 1/2, 4p, 1)y, & is a common
eigenform for all T(®) (I : prime # p), and g| UG = 2,8, 4, =% P
Moreover, we defined the involution w, on &"(k +1/2, 4p, 1, by gl w,

12l — 1 k+1/2
— <T> 2| Y, (cf. [4. (3.6) and Theorem (3.9))).

This involution corresponds to the Atkin-Lehner involution W(p) as
follows. Take the primitive form G € S°(2k, p) as in the above statement.
Then from [4, Theorem (3.9)], we can write 0,8 = — pl"‘ gl U(,bz) =g w,,
0y = —pl_kli, = £ 1. By using [4, Theorem (3.11)(1)] and [2, Corollary
4.6.18(2), 0,G = —p' "Gl U®) = G| W(p).

—_ 1 — 1 k-1

Therefore, f|X* = <—p—> gfeglY,=ggoglw, = <7‘> g

— 1 k—1
=6lwe) =(57) 6.
Remark (4.2). For x = <£> take a C-basis {f} of & (k + 1/2, 4p,

x)x consisting of common eigenforms for all T(/*) (I :prime, I # p). Put
0;= 0;. Then we have D := #{i[0, = 2, @€yt — #{ilo,=x, ®

— 1\k-1
Clhrnyd = <~—p—1> tr(W(@®) ; S2k, p)). In particular, when p =5 and

k = 2, we have
k-t . h(— 4p), if p =1 (mod 4),
D= (") (= DY2) x {4h(=p), itp =3 mod®),
2h(— p), if p =7 (mod 8).
Here, h(x) is the class number of @ (V).
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