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1. Introduction. Let Q(x, y) ax + bxy + cy be a positive defi-
nite quadratic form with discriminant d-- b- 4ac, where a, b and c are
real numbers and a > O. Then the Epstein zeta function (s, Q) is defined
by

1
,Q(x, y)-S for a= R(s) > 1,(s, Q) - z,

where x, y runs over all integers excluding (x, y) (0,0) and s a-t- it
with real numbers a and t. We put

k= 2a
It has been the subject of many mathematicians to study the distribution of
the zeros of (s, Q) from the view point of the comparison with that of the
Riemann zeta function (s). (s, Q) does not in general have Euler product
expansion, while that of (s) has been the key source for the proofs of var-
ious properties of the distribution of its zeros. Hence it is natural that
(s, Q) has in general the properties which the functions like (s)never
have. For example, (s, Q) has in general a real zero between 0 and 1 (cf.
Bateman-Grosswald [2]). In certain cases, (s, Q) has even infinitely many
zeros in t(s) > 1 (cf. Davenport and Heilbronn [4]). On the other hand, sur-
prisingly enough, the Epstein zeta functions have in general also the prop-
erties which one has expected only to the functions like (s). For example,
(s, Q) has infinitely many zeros on the critical line (s) 1/2 (cf. Kober
[9]). More recently and more strongly, it has been shown under certain
hypothesis by Bombieri and Hejhal [3] and Hejhal [7], that almost all the
zeros of (s, Q) with integral a, b and c lie on the critical line ts 1/2.

So we are left in the mist.
A remarkable result, bridging these two opposite directions, proved by

Stark [13], is that "k-analogue" of the "Riemann Hypothesis" hold for the Ep-
stein zeta functions. The purpose of the present article is to show that
"k-analogue" of GUE law fails for the Epstein zeta functions. As we have
shown in [5][6] (cf. also [1] and [11]), this should be distinguished completely
from the other zeta functions like (s).

We start with recalling Stark’s "k-analogue" of the "Riemann Hypoth-
esis". Stark [13] has shown that

for k > K, all the zeros of (s, Q) in the region 1 < a < 2, 2k <_ t
<_ 2k are simple zeros; with the exception of two real zeros between 0 and 1, all
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are on the line a 1/2 and that for 0 < T < 2k,

N(T, Q):
T

log (kT)--- -t- O(log(T + 3)(log log(T + 3))-),
where N(T, Q) denotes the number of the zeros of (s, Q) in the region 1
<a<2,0<_t<_T.

As is seen in Stark’s paper [13], we have for 0 < T <- 2k,
N(T, Q) F(T) + A(T),

where
1

FQ T) arg

and

1
arg F + i + arg(1 + i2T)

<_ c,
C being always some positive constant.

Since

()1/2+ir 1 ( T)1
arg +--argF + i log + 0(1)

the number variance with which we are concerned is
1 2T-2 7" 2

log
where we put

1
So (O =arg(1 + i20 + Ao (t)

If it obeys GUE law, then it must be that
1 (T So t+ kT S(t) dt Clogaasa.

log
Contrary to this, we can show the following theorem.

Theorem. For k > K and 0 < T k, there exists some positive constant
C such that

i 2T-2 a 2
log

uniformly for positive o <_ 1__ log k___T.
Consequently, we see that as k--- SO t +

k2
SO (t) dt <- C

log(
uniformly for positive aN (1/rDlog(k2/rr). Thus we see that "k-
analogue" of GUE law fails for the Epstein zeta functions.

To prove the above theorem, we shall prove the following lemma which
is more general than what we need.

Lemma. For any a in 1/2 < a <_ 1, there exists a positive constant
8(a) which may depend on a such that

r
(arg((a + i(t + h))) arg((a +dtit)))
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A2(n)
T 2 no

(1 cos (h log n)) + O(T-))
n=. log n

uniformly for 0 < h << T, where A (n) is the von-Mangoldt function defined by
log p if n with a prime number p and on integer k >-- 1

A(n)
0 otherwise.

It is clear that this for 1 implies our Theorem stated above, since

Ao(t) O(1).
2. Proof of Lemma. Suppose that 2-<X= Ta-< T, a is a suffi-

ciently small positive constant which may depend on a. We put
1 (fl 1 2 )ax,t=g+2max 2’ logXp

p running here through all zeros/3 -t- ir of (s) for which

It--?’[_< log X
We put further

A(n) for 1_< n_<X

Ax(n) A(n)
(log (X3/n)) 2(log (X/n))

2(log X)
for X <_ n <_ X

X XaA(n) (log (X3/n))/2(logX) for <_ n <_

Under these notations, we shall use the following Selberg’s explicit formula
(cf. p. 239 of Selberg [12]) for a >_ ax, and t _>

(s) + O X-- + O(X--logt)
n<X I/l n 14x’t+it

Then we get for t --> T and for a >-- Crx,t,

arg((a + it)) -y-(u + it) du
ff

" na+it log Xn<x log n
M(t) + O(R(t)), say.

We put

n<X3 l/lTx,t+ it

1 if a>_ ax,tf(, t)
0 otherwise.

Now for any 1/2 < a <_ 1,
r
(arg(( + i(t + h))) arg({(a + dtit)))

f(a, t + h)f(a, t) (arg((a + i(t + h))) arg((cr + it))) 2 dt

+ (1--f(a, t+h)f(a, t))(arg((a+i(t+h))) --arg((+it)))dt

$1 + S, say.
Since arg((a + it)), arg((a + i(t + h))) << log T for a >_ 1/2, we get
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3

T log X 7" log X such that maXx3._) fl > + a -It-rl< logX

>g oX

T

fT
2T

$2 << log T (1 f(a, t))dt + log T (1 f(a, t + h))dt

log T(S + S9, say.

S <- T <_ t <- 2T there exists + ir in the region > + log X’

x(e-1/2) X-
logX << logXgr(a’ T),<--2

r_lox r<Zr log X

(+)
where we put

12

(a, T) min(Tr (1- (1/2+) 1/2) T4(1/2+a)1/2(1-(1/2+a)1/2)) logc T.
We notice that we have used Theorem 1 in p. 128 and Theorem 1 in p. 131
of Karatsuba and Voronin [8]. (One might get a better estimate if one does

not use a trivial estimate X3(a-1/2) << X{.) In a similar manner we estimate

S"2 and get
X3/2

$2 << logX (a, T) log2 T.
To evaluate $1, we use the above formula for arg((a+ it))and

arg((a + i(t + h))).We get first

S f(, t + h) f(e, h)(M(t + h) M(t)) dt

+ 0 (M(t + h) M(t)) dt CTR(t)2 dt + 0 CTR(t) dt

S3 + 0( /-s) + O(Ss), say.

s (M(t + h (0 dt

+ (f(a, t + h)f(a, t) 1)(M(t + h) M(t)) dt

S4 + S6, say.

S << (1 --f(a, t)) dt (M(t + h) M(t)) 4 dt

+ (1 --f(a, t + h)) dt (M(t + h) M(t)) dt

So we are left to evaluate $4, $7 and S.
$4 Lr (ri(t) rT(t))2i dt

4 (t) dt-- (t) dt +- r](t) 12 dt
Ss+ Ss+ S9,say,

where we put
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r(t) 22 n+ 1
n<x log n

We get simply,

$8 44
Ax(m)Ax(n) << q)(X, a),

m,n<x (mn) log m log n log(mn)
where we put

1 ifa=l
(X, )

Xo(-)/logaX if1/2 < a< 1.
By Montgomery and Vaughan [10], we get

S- g Z (T + O(n)) A(n) __. 1
n<x n logzn ,n

A(n)
T.=zZ nZ logz n

(1 cos (h log n))

A (n) )+ O( A(n) )O’T,>x( n log n ,<xn-logn
+

A(n) ( T ) + O((X a))T nZ
(1-- cos (h log n) + 0

X_logXn= log n
where we put

flog log X if a 1
(x a) IX(-a)/log X if 1/2 < a < 1.

Using Montgomery and Vaughan [101 again, we get

$7( 1 1 dt
,.<x (ran)+ log m log n

<<
k+’

dr<<
<x

T + O(k) ) a(k)k
<< T d(k)Zk- + d(k)k- << T + X(-) loga X,

k<X k<X

where

a(k) ,=2 Ax(m)Ax(n)logmlogn (m- 1)(h--1) <<d(k)--- ,’1
m,r<X

and we have used the estimate

2 d2(k) << Yloga Y.

Finally, we get, by using pp. 248-251 of Selberg [121,

log X
,

n

Ax[ 2 log(Xp) 1’ dt d)(2"
log X a+it

+ T log T)<< TX/-.
Consequently, we get

r
(arg((a + i(t + h))) arg((a + i0)) dt
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+ O(T--}(-1/2)) + 0.]- + O(T-(a, T)log T)

+ 0 T-r T6a(1-logT+ logT /(o’, T)

Here we can choose an optimal a and get our Lemma as described in the
introduction, although we shall not describe it explicitly.. Concluding remarks. -1. It is clear that Stark’s remainder term
in N(T, ) can be replaced by O(log log T).

-2. More generally, we can evaluate the mean values
2r

(arg((a + i(t + h))) arg((a + dt.it)))

Here we notice only that we have the following asymptotic formula for an
integer k _> 1 and for any 1/2 < a <_ 1.

r
(arg((a + it))) dt TC(a, k) + O(T-O’*),

where we put

C(a, k)
2z --0 2kj (-- 1) A(n)...A(n)

nx n,--2 (nl...nj)Zlog nl...log nj
A (rn)...A (rnz_)

nl...n=rnl...m.k_ log m... log rn2,_

and 6(a, k) is a positive constant which may depend on a and k.
3-3. It is noticed by Professor Ramachandra that the remainder

terms in the above mean value theorems for a 1 can be improved. For
example, when k 1 and a 1, the last remainder term can be replaced by
O(log log 73.
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