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82. Spined Products of Some Semigroups*’

By Miroslav CIRIC and Stojan BOGDANOVIC

University of Ni§, Yugoslavia
(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1993)

Spined products of semigroups were first defined and studied by N.
Kimura, 1958, [7]. After that, spined products have been considered many a
time, predominantly those of a band and a semilattice of semigroups with re-
spect to their common semilattice homomorphic image. Spined and subdirect
products of a band and a semilattice of groups are studied by M. Yamada
[13], [14], J. M. Howie and G. Lallement [6] and by M. Petrich [10]; spined
products of a band and some types of semilattices of monoids are studied by
F. Pastijn [8], A. E1-Qallali [3], [4], and by R. ]J. Warne [12]. For other consid-
erations of these products, we refer to [4], [5], [7], [9], [15]. In the quoted pap-
ers, spined products are considered in connection with some types of bands
of semigroups. In this paper, we give a general composition for bands of
semigroups that are (punched) spined products of a band and a semilattice of
semigroups. This composition, in some sense, is a generalization of a
well-known semilattice composition (see Theorem III 7.2. [9]).

Let B be a band. By <, and <, we denote quasi-orders on B defined
by i<,jo i =74,i<,j<ji=7j and by < we denote the natural order on
B defined by “i < j means that { <, and { <,j”. For { € B, we will denote
by [z] the class of an element ¢ in the greatest semilattice decomposition of a
band B (so [7] is an element of the greatest semilattice homomorphic image
of B). If S is a band B of semigroups S;, ¢ € B, then for k € B, F, will de-
note the semigroup F, = U{S;|i € B, [i] = [k]}. If 6 is a homomorphism
of a semigroup S into a semigroup S’, and if T is a common subsemigroup of
S and S’, then 6 is a T-homomorphism if af = a, for all a € T. A subsemi-
group T of a semigroup S is a retract of S if there exists a homomorphism 8
of S onto T such that af = a, for all a € T. We call such a homomorphism
a retraction. If T is a subsemigroup of a semigroup S, then we say that S is
an oversemigroup of T. If p is a congruence on a semigroup S, then we denote
by o' the natural homomorphism of S onto S/p. If P and @ are two semi-
groups having a common homomorphic image Y, then the spined product of P
and Q with respect to Yis S= {(a, b) € P X Q|ap = by}, where ¢ : P—Y
and ¢ : @ — Y are homomorphisms onto Y. If Y is a semilattice and P and @
are a semilattice Y of semigroups P,, a € Y, and @,, a € Y, respectively,
then the spined product of P and @ with respectto Yis S = U,y P, X @,.
A subsemigroup S of a spined product of semigroups P and @ with respect
to Y, that is also a subdirect product of P and @, is a punched spined product
of P and @ with respect to Y.

*) Supported by Grant 0401A of RFNS through Math. Inst. SANU.
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For undefined notions and notations we refer to [5] and [9].

Lemma 1. Let B be a band. To each 1 € B we associate a semigroup S;
and an oversemigroup D; of S; such that D; N D; = @, if i # j. Fori, j € B,
(1 = [J1, let ¢,; be a mapping of S; into D, and suppose that the family of ¢, ;
satisfies the following conditions :

(1) @, ; is the identity mapping on S;, for every it € B ;

(2) (S:0,:)(S;¢,.,) € S,;, foralli, j € B;

(3) [ag,;) (bg; )1, = (a, ) (bg,; ), for a<€ S, b<ES, [yl =I[k], 4, J,
k € B.

Define a multiplication % on S = U,zS; by: a* b= (ag, ;) (b, ), for a €
Si, b € S,. Then S is a band B of semigroups S;, i € B, in notation S = (B ;
Sy @150 D).

Proof. Assume a € S;, b€ S;,,c€ S,,4,j, k € B. Then by (3) we
have

(a%b)*c = [(ag,,;) (bg; ;)] *c = [(ad, ;) (bp; ;)1D;;i:(cPpisi)

= (ag; i) (b9, ;) (¢hyii) = (@;,ij) [0, ;1) (cdy 111 D isi
= ax [(bg, ) (ch ;)] = a* (ko).
Thus, S is a semigroup. Clearly, it is a band B of semigroups S;.

If we assume ¢ =7 in (3), then we obtain that ¢,, is a homomorphism,
for all ¢, k € B, [1] = [k]. If D, = S,, for each i € B, then we write
S = (B;S,, ¢;;). Here the condition (2) can be omitted.

Theorem 1. Let S be a band B of semigroups S;, 1 € B. Then
(@) S=(B;S,, ¢,;, D)) if and only if for every k € B there exists an over-
semigroup D, of S, and an S,-homomorphism of F, into D, ;

(b) if S= (B;S,, ¢,;, D)), then we can assume that D, = {ag,,|a € S,,
[:1 = [k]1}, for each k € B
() S=(B; S, ¢,;) if and only if for every k € B, S, is a retract of F,.

Proof. (a) If S=(B;S,, ¢;;, D), then for k € B, the mapping
0,: F,— D, defined by: af,= a¢,,, for a€ S, [i] =[k], is an
S,-homomorphism.

Conversely, suppose that for every k € B there exists an oversemi-
group D, and an S,-homomorphism 6, of F, into D,. For ¢,j € B, [i] =
[/], define a mapping ¢,,; of S, into D; by: a¢,;, = ab;, a € S,. It is clear
that (1) holds. Let a € S;, b€ S, ¢, € B. Then a, b€ F;;, ab < S,
whence (a@, ;) (bp; ;) = (ab,) (b6,;) = (ab)6,; = ab. Let k € B, [ij] = [k].
Then [(ag, ;) (b, )1, = (ab)b, = (ab,) (b6, = (a¢,,) (bp,;,). Thus,
S = (B 5 Si’ ¢,~,j, D,)

(b). In notations from (a), for k € B, {ag¢;,|la € S,, [i] = [k]} =
F,¢,, and it is a subsemigroup of D,. Clearly, every one of the conditions
(1)-(3) of Lemma 1 holds for D, if and only if it holds for F,¢,. Thus, (b)
holds.

(¢) This follows by (a).

If B is a semilattice, then S = (B;S,, ¢,,, D;) is a semigroup con-
structed as in Theorem III 7.2. [9]. In this case, for each kK € B, S, is an
ideal of F,, so using well known results from the theory of ideal extensions
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of semigroups, in Theorem III 7.2. [9] was proved that every semigroup S that
it a semilattice Y of semigroups S,, & € Y, can be composed as S = (Y ; S,,
Pas Do), and, furthermore, each D, can be chosen to be a dense extension of S,
and that D, = {b¢y, B = a, b € S;}. This fact will be used in the next con-
siderations to representing a semilattice of arbitrary semigroups.

Also, we will give another construction. If S = (B ; S;, ¢,,, D,) and if
(4) S;¢,; < S, for lil = [4], 4,5 € B;

(5) ¢,;0;x = ip for il = [j1 2 K], ¢, 5, k € B;

then we will write S= [B;S,, ¢;;, D). 1f $= (B; S, ¢,,) with (4) and
(5), then we write S = [B;S;, ¢;;0. f S= (B;S,, ¢;,) and if {¢,,;]4,J
€ B, [i] = [J1} is a transitive system of homomorphisms, i.e. if @, ;P;r = Dis
for [1]1 = [j]1 = [k], then we will write S = [B; S;, ¢,,].

Let B be a band. To each ¢ € B we associate a semigroup S; such that
S;NS;= @ if i #j. Let ¢;; and ¢,; be homomorphisms of S; into S; de-
fined for ¢ =, and ¢ =, j, respectively, such that:

(6) for every ¢ € B, ¢,; = ¢,, is the identity mapping on S;;

(7) @i;Pix = Qipo for i 2,52 k;

(8) i = iy fori 2,5 2, k;

D) @1Pini = PikPisi for 1 2,7, 12, k.

Define a multiplication % on S = U ,.5S; by: a * b = (ag, ;) (b¢;,;), for
a<€ S, b S, i,j € B. Then by [11] S is a band B of semigroups S;, 1 €
B. This construction is introduced by B. M. Schein [11], and it has been ex-
plored by the authors in [1], where it is denoted by S = [B;S;, ¢,;
¢:,] and called a strong band of semigroups S;. It is easy to prove the follow-
ing lemma:

Lemma 2. If S=1[B; S, ¢,;,1, then S=[B;S,, ¢;;, ¢:,;1, where ¢,;
=, for i 2,4, and ¢,; = ¢, for i =,j. Conversely, if S = [B;S,, ¢,
¢;;1, then S = [B; S;, ¢,;1, where ¢, ; = ¢, ;0. for [i1]1 = [5].

Therefore, the constructions [B;S;, ¢;;, ¢;;] and [B;S,, ¢;,] are
equivalent. So [B ; S;, ¢,;,]1 will be called a strong band of semigroups S;. If B
is a semilattice, then we obtain a well known strong semilattice of semigroups.

The following lemma is proved by B. M. Schein [11], in the case when S;
are monoids, and it is immediate to extend this proof to the general case.

Lemma 3. Let B be a rectangular band.

IfS=1[B;S,, ¢;;l. then each ¢, ;, is an isomorphism of S; onto S;, i, § €
B, and for every k € B, the mapping 0 of S into S, X B defined by al =
(ad; 1), fora € S;, i € B, is an isomorphism.

Conversely, if S= T X B, if we assume that S; = T X {1}, i € B and if
we assume that ¢, ; is a mapping of S; into S;, i, j € B, defined by (a, ) ¢,; =
(a,9),a<€ S, thenS=[B; S, ¢,,].

Theorem 2. Let a band B be a semilattice Y of rectangular bands B,. If S
= (B; S, ¢.j, D)), then
(A1) S is a semilattice Y of semigroups S, = (By; S;, ¢:;, D), a € Y ;

(A2) a relation 0 on S defined by: apb if and only if a € S;,, b € S,, [i] =
/] = a, and ag,, = b, forallk € B, a = [k], is a congruence on S and T
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= S/p is a semilattice Y of semigroups T, = S, 0" ;
(A3) S is a punched spined product of T and B with respect to Y.
Conversely, if S is a punched spined product of T = (Y ; Ty, $ns D,) and B
with respect to Y and if we assume that:
B1) S, = (T, x{}) NS,D,=D, x {i}, fori € B;
(B2) fori, j € B, [i] = [j]. a mapping ¢, of S; into D; is defined by:
(a, D¢;; = (@dii J) 3
then S = (B ; S;, ¢:,, D).

Proof. Let S= (B;S,, ¢, D). Then it is clear that (A1) holds.

(A2) It is clear that p is an equivalence relation. Assume that @ob and
r€S. Leta€ S, beS;,i,j€EB,,a€Yandlet x€S,, kE By, BE Y.
Then axr € S, bx € S,,, ik, jk € B, Assume | € B, aff = [I]. Then a =
[/], so a¢;, = bg;,. By (3) we obtain that

(ax) ¢y, = [(ad; 1) (Xd i) 1Pin, = (ad; ) (xdy,) = (b)) (xPy )
= [0, 1) (X1 ; )1 Djis = (b2) Py -
Thus, axpbx. Similarly we prove that xapxb. Therefore, p is a congruence.
Let 0 be a semilattice congruence on S determined by the partition {S, |la €
Y}. Then o S 0, s0 T = S/p is a semilattice ¥ of semigroups T, = S,p0" .

(A3) Let & be the band congruence on S determined by the partition
{S;|i € B). Clearly, p N € = ¢, where ¢ is the equality relation on S, so S
is a subdirect product of T and B, where a one-to-one homomorphism @ of
S into T X B is given by a® = (ap, a&), a € S. Assume a € S. Let a €
S,1€B,a€Y Then a€ S, so ap € T,, and a§ =i € B,. Thus,
SO < U,.yT, X B, so Sis a punched spined product of T and B.

Conversely, let T= (Y ; T,, ¢os D,), let S be a punched spined pro-
duct of T and B and let S;, D; and ¢;; be defined by (B1) and (B2). Then it
is not hard to verify that S = (B ; S;, ¢,,, D).

Theorem 3. Let a band B be a semilattice Y of rectangular bands B,. If S
= [B; S, ¢;;, DI, then
(C1) S is a semilattice Y of semigroups S, = [By; S, ¢:,1, a € Y ;
(C2) each S, is isomorphic to T, X B,, where T, is a semigroups isomorphic to
each S;, 1t € B,;
(C3) there exists a semilattice composition T = (Y ; T, Pops Do) such that S
is isomorphic to the spined product of B and T with vespect to Y. Furthermore, if
S=10B;S, ¢;;1 (S=1B; S, ¢:;1), then T can be chosen to T = (Y ; T,,
bap) (T=1Y;T,, dasl).
Conversely, if S is a spined product of T = (Y ; Ty, P, Do) and B with ve-
spect to Y and if we assume that:
D1) S, =T, X {i}, D,= D, x {3}, fori € B,;
(D2) fori, j € B, [i] = [j1, a mapping ¢,; of S; into D, is defined by:

(a, N¢;; = @iy, D ;

then S = [B; S;, ¢,;, DI. Furthermore, if T = (Y ; Ty, ¢pu ) (T =Y ; T,,
Gasl), then S= 1B ; S, ¢,;,1 (S=1[B;S,, ¢,,D.

Proof. By (5) and by Lemma 3 it follows that (C1) and (C2) hold.

For any a € Y, fix 0, € B,, and assume that T, = S, , D, = D, . For
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a, BE Y, a2 p, define a mapping ¢, of T, into Dy by ¢, = Pogo, It is
clear that @,, is the identity map of T,, for any @ € Y. Assume «a, ,8 €Y,
a € T, b € T, Then by (3) we have that

(a¢a as) (b¢8 ap) = (a¢oa oas) (b¢o,, oa,g) [(ag,. oB) (bﬁbo,9 o,,‘o,g):I P0y05.005"
so by (2) and (4) we obtain that (g qp) (bge5) € S,,, = T,s wWhence it fol-
lows that (T,0g 4s) (TePgap) S Tap. For r € Y, aff > 7' by (3) and (5)

(@) (hsa)] b = L@y (0,001 b0rs,
= [(a¢oa oao,,) (b¢oﬂ oaos)]‘ﬁoaos oa,3¢oa5 0, — [(a¢oa,oaoﬁ) (b¢os,oa03)] ¢0ao,,o,
= (o0, (b9, 0) = (ad,,) (bdg,).
Thus, by Lemma 1, ‘there exists a semilattice composition S = (Y ; Ty, Pq4,
D).
Define a mapping @ of S into T X B by: a® = (ag, ,, i), if a € S, ,
« € B,, a €Y. Clearly, S® € U,.,T, X B,. Since @0, 1S an isomorph-
ism of S; onto S, (by Lemma 3), then @ is a bijection of S onto U,y T, X
B,
Assume a € S, , b € S « € B,, i3 € B, a, BE Y. Then by (5) and
(3)
(a®) (b0D) = (@, o, 1 )(b¢, 057 25) ((ag;, 0, Paas) (b¢,3 °s¢ﬂ ag)s lals)
= ((agy, oa¢oaoa5) (b¢1, 0, %o, oa,)’ lolg) = ((a¢i oaﬂ) (001,005 7 Tals)
([(a¢ta iazﬂ) (b¢i3 tatﬂ)] ¢zaxﬁoaﬁyza13) [(a¢la ‘a's) (b¢xs i 19)] (D = (ab) @
Thus, @ is an isomorphism of S onto U ,.,T, X B, and (C3) holds. The rest
is obvious.

Conversely, let T= (Y ; S,, ¢as D,), let S be a spined product of T
and B with respect to Y, and assume that S;, D, and ¢, are defined by (D1)
and (D2). Then by Theorem 2. we obtain that S= (B; S,, ¢,,, D). It is
clear that (4) holds. Assume 4, j, k € B, [i]1 = [j]1 = [k], let [] = [j] = «,
(k] =B, and let (a, i) €S, Then (a, i), ;6;, = (APgoPass k) = (@Pyz, k)
= (a, 1)@, Therefore, (5) holds. Hence, S = [[B; S;, ¢,;, D,II. The rest is
obvious.

In the next considerations we will assume that S is a band B of monoids
S;, 1 € B, that B is a semilattice Y of rectangular bands B,, « € Y. For { €
B, let e; denote the identity element of S,. We will give some applications of
the previous results to bands of monoids. If S = (B ; S;, ¢,,), then it is easy
to verify that ¢,; are uniquely determined by: ag,; = e;ae;, a € S,;, i, k € B,
[¢]1 = [k]. Thus, S = (B ; S, ¢,,) if and only if for every k € B, the mapping
¢y : F,— Sy, defined by ap, = e,ae,, a € F,, is a homomorphism. 1f {¢;|i €
B} is a subsemigroup of S, then S is a proper band of monoids S;, [11]. If for
every a € Y, {e;| i € B,) is a subsemigroup, then S is a semiproper band of
monoids S;. It is not hard to prove that S is a semiproper band of monoids S; if
and only if S = (B ; S,, ¢,,) and ¢,;¢, = &, forj, k € B, [;71 = [k]. Also, S
is a spined product of a band and a semilattice of monoids if and only if S is a
semiproper band of monoids and ag;p, = ap,, foralla € S,, j, k € B, [j] =
a = [k]. Using these facts and using Theorem 2 [11], we obtain

Corollary 1. A semigroup S is a strong (proper) band of monoids if and
only if S is a spined product of a band and a strong (proper) semilattice of
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monoids.

For proper bands of monoids, the previous corollary is proved by F.
Pastijn [8].

Corollary 2. S = (B ; S, ¢,,), where S; are unipotent monoids, if and
only if S is a spined product of a band and a semilattice of unipotent monoids.

Spined products of a band and a semilattice of cancellative (therefore,
unipotent) monoids are considered by R. J. Warne [12] and by A. El-Qallali
(3], [4].

Corollary 3. The following conditions on a semigroup S are equivalent:
(1) S is an orthodox band of groups;
(11) S is regular and a subdirect product of a band and a semilattice of groups;
(i11) S is a spined product of a band and a semilattice of groups.

M. Yamada [13] proved (i) < (iii) and M. Petrich [10] proved (i) <&
(ii).
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