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1. Preliminaries. Let m=/=l be a square-ree integer and d the
discriminant of K--Q(/). If A and B are ideals in K such that A--(p)B
and Np0, we write AB. Let p, ..., p be the odd prime divisors of m.
We shall prove the next theorem without using Dirichlet’s theorem of
arithmetical progressions.

Theorem 1 (Gauss). Let A be an ideal such that (A,d)--1. Then

AB for some ideal B if and only if NA )p. =1, l<i<s.

First we prove the next proposition.
Proposition 1. Let A be an ideal. Then AB for some ideal B if

and only if there exists a non-zero integer z and a e A such that z=-
NA

Proof. Let A=pB with Np>O. If O=/=fl e B, then pfl e A and N(Pfl)
NA

NB
Conversely, letz=..NA,N whereNandoeA. Let 6’ be an

ideal such that (o)=AC. We may assume that 6’ is primitive. Then =
NC. If p l hen since 6’ is primitive, p deeomposes in K, i.e., (p)=PP,
P=/=P. If po and P 6", then P 16", P (C Therefore A

If K is real, let r be the 2-rank of the ideal class group, in the narrow
sense and ro be that of the ideal class group, in the wide sense. Then we
have the next corollary (el. [1], [], [4]).

Corollary. r=rop=l (mod 4), 1<_i<_.

Poo. =r(/)B for some ideal B. When ml (mod4),
Nothen (/) Ira, /]. Writing o=mx+/ e (J), we gel:

mx-. Therefore N(/)

= mz=-t- has a non-trivial integral solution
p=l (mod4), 1<_i<_.

If m---- 1 (rood ), then (/)= Ira, m+/ ]. We get: similarly the same

result.
2. Proof of Theorem 1. Let A be a p.rimitive ideal sueh that (A,

[ b-t-/--] whereNA=a>OandlN(b-t--d-)=1. We can write A= a,
2 2

Hence
( 1 ) b2--4ac=d
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for some integer c. Writing o=ax+ b+ / d
Y e A, we have

2
b d y.N= (ax + -y)---

Therefore

(2)
NA

z (2ax + by) dy a(2z).
Write a=a# where a is square-free. From Proposition 1 and (2), we get
(3) AB2@ alx +my =z has a non-trivial solution.

If a and b are Ion-zero rational integers, we shall write aRb whenever
a is a square modulo b. We need the next theorem.

Theorem 2 (Legendre). Let a and b be positive square-free integers.
Then ax2+by2=z has a non-trivial solution if and only if aRb, bRa, and

abR(a, b). (An elementary proof can be found in [2].)
(a, b)

Now mRa follows from (1). Since (a, m)= 1, we get

Therefore if mO, then
A B alRm

= aiRp, l<_i<_s

If m mO, then
A B {::4 alx=my +z

(ax) =a,my +az
(::4 amRa, aRam,
@ aRm.

This completes the proof o Theorem 1.

and -mRa

(a, m)
R(a, m).
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