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For any number field K of finite degree, we denote by i(K) the class
number of K. ¢, denotes a primitive g-th root of 1. In this article, we
show the following.

Theorem. Let p and q=4p+1 be both primes. Suppose p+1 is not
a power of 2, and 2p+11is not a power of 3. Then

R (@<q=>hr (@Q=hQ 7)),
where, h*(q) denotes h(Q(Z,+;"), namely the class number of the maxi-
mal real subfield of Q(Z,).

To show the above theorem, we prepare some propositions.

Proposition 1. Let p be a prime. Suppose L[k is a Galois p-exten-
tion. Assume there is at most one prime which ramifies in L|k. If
| (L), then p|h(k) (see [2]).

Proposition 2. Let p and q be distinct primes. Let F be a finite
algebraic field. Suppose E [F is a Galois g-extention and f is the order of
pmodq. Then, for any « with 0<a< f,

| I(E) = p° | (F).

Proof. Let P(E) be the maximal abelian unramified p-extention of
E. Since p*||h(E), [P(E): El=p*. Since E/F is Galois, (P(E)/F) is Galois
because of the uniqueness of P(¥). Suppose G=Gal(P(E)/F). We can
write the order of G as p*g? for some non-negative integer .

To go further, we need the following :

Lemma. Let p, q be distinct primes. Let G be a finite group of order
p*qf. Let f be the order of pmodq. Let H be a q-Sylow subgroup of G
and a< f. Then H is a normal subgroup of G.

Proof of lemma. Let S be the number of ¢-Sylow subgroups of G.
Then s=mq+1 for some non-negative integer m and s divides p*q*?. We
can write s=mq+1=p' for 0<t<wa. Especially, p‘=1modq. Since f is
the order of p mod ¢, £=0 holds. Therefore, s=1.

By the above lemma, the ¢-Sylow subgroup H of G is a normal sub-
group of G. Let M be the subfield of P(E) which corresponds to H. Then
M |F is a Galois extention and G(M /F)=G(P(E)/E). Therefore, M/F is
an abelian unramified extention of degree p*. Therefore we have p*| h(F).
If p**'| h(F"), then p**'| h(F). We conclude Proposition 2 holds.

Corollary. Let p, q, E, F and f be as in Proposition 2. Then

pI(F), p|W(E) = p’|(E),
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and
p°||h(F) = p*||R(E) or p'|h(E).

Proof of the theorem. Put K=Q({,+¢;") and k=Q(,/ q). By the as-
sumption on ¢ and p, K /k is a p-extention.

Since h(k)<+y q =+/4p+1 (see [3]), we have h(k)<p. Therefore, pth(k).
By Proposition 1, p/h(K). Now let » be any prime #p. We shall show
that ryh(k)=ryh(K). In fact, rfh(k) and r|h(K) would imply /| k(K) by
Corollary of Proposition 2, where f is the order of  (mod p). Thus /<
h(K)<q, which is in contradiction to our assumptions on p, ¢ shown as
follows.

In fact, /=1 (mod p) implies »/—1=mp for some m=1, and m=4
means r’' =4p+1=q in contradiction to »/ <q.

In case r=5, " —1=(@r—-1) (@ "'+ ... 4+1) can not be =2p because r—1
is an even number >4, and »/'4+...4+1=2. Thus r/—1>4p, i.e. m=4.

In case =2, 3, our assumptions on p+1 and 2p-+1 enable us also to
show m>=4.

First let r=2. We have 2/=1 (mod 3). It follows f=2l for some .
Since 2/ —1=(2'—1)(2°+1)=3p, we should have [=2. But 4p+1=21 is
not a prime, so m=3 is impossible. The case »=3 is clear.

In view of the well-known fact h(k)|h(K) (see [4]), we see thus that
the conclusion of our Theorem holds.

Examples. Suppose ¢=1229 or 4493. Suppose 2*(q)<q. Then h*(q)
=3.

Remark 1. Suppose p, ¢=4p+1 are prime. Then we have only 5
examples {3, 7, 13, 127, 1093} for p<<10°?, which satisfy the condition that
p+1=27 or 2p+1=3".

Remark 2. Let ¢ beaprime. Weknow no example for 2*(q)>1 such
that h*(q) is completely determined. We have only one example 2+ (163)=4
(see [1]) under the generalized Rimannian hypothesis by van der Linden.
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