37. On Properties of Non-Carathéodory Functions

By Mamoru NUNOKAWA

Department of Mathematics, University of Gunma

(Communicated by Kiyosi Itô, M.J.A., June 9, 1992)

Let N be the class of all functions that are analytic in the unit disk $E = \{z : |z| < 1\}$ and equal to 1 at z=0. We call $p(z) \in N$ a Carathéodory function, if it satisfies the condition Re p(z) > 0 in E.

In this paper, we will obtain some properties of $p(z) \in N$ which is not a Carathéodory function. We need the following lemma due to [1, 2].

Lemma 1. Let w(z) be analytic in E and suppose that w(0)=0. If |w(z)| attains its maximum value on the circle |z|=r<1 at a point z_0 , then we can write

$$z_0 w'(z_0) = k w(z_0)$$

where k is a real number and $k \geq 1$.

Theorem 1. Let $p(z) \in N$ and suppose that there exists a point $z_0 \in E$ such that

(1)

Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik$$

where k is real and $|k| \ge 1$.

Proof. Let us put

(2)

$$\phi(z) = \frac{1 - p(z)}{1 + p(z)}.$$

Then we have that $\phi(0)=0$, $|\phi(z)|<1$ for $|z|<|z_0|$ and $|\phi(z_0)|=1$. From (1), (2) and Lemma 1, we easily obtain

$$rac{z_{_0}\phi'(z_{_0})}{\phi(z_{_0})}\!=\!rac{-2z_{_0}p'(z_{_0})}{1\!-\!p(z_{_0})^2}\!=\!rac{-2z_{_0}p'(z_{_0})}{1\!+\!|p(z_{_0})|^2}\!\ge\!1.$$

This shows that

$$-z_0 p'(z_0) \ge \frac{1}{2} (1+|p(z_0)|^2)$$

and $z_0 p'(z_0)$ is a negative real number.

Since $p(z_0)$ is a non-vanishing pure imaginary number, we can put $p(z_0) = ia$,

where a is a non-vanishing real number.

For a > 0, we have

$$\operatorname{Im} \frac{z_0 p'(z_0)}{p(z_0)} = \operatorname{Im} \left(-\frac{i z_0 p'(z_0)}{|p(z_0)|} \right)$$

$$\geq \frac{1}{2} \left(\frac{1+a^2}{a} \right) \geq 1$$
,

and for a < 0, we have

$$egin{aligned} &\mathrm{Im} \, rac{z_0 p'(z_0)}{p(z_0)} \!=\! \mathrm{Im} \, rac{i z_0 p'(z_0)}{|p(z_0)|} \ &\leq \! -rac{1}{2} \Big(\! rac{1\!+\!a^2}{|a|} \Big) \!\!\leq \! -1. \end{aligned}$$

This completes our proof.

Theorem 2. Let $p(z) \in N$ and suppose that

(3)
$$\left|\operatorname{Im}\frac{zp'(z)}{p(z)}\right| < 1$$
 in E .

Then we have

Re
$$p(z) > 0$$
 in *E*.
Proof. From the assumption (3), we easily have
 $p(z) \neq 0$ in *E*.
In fact, if $p(z)$ has a zero of order *n* at $z = \alpha$, then we can put
 $p(z) = (z - \alpha)^n p_1(z)$
where $p_1(z)$ is analytic in *E* and $p_1(\alpha) \neq 0$. Then we have
(4) $\frac{zp'(z)}{p(z)} = \frac{nz}{z - \alpha} + \frac{zp'_1(z)}{p_1(z)}.$

But, the imaginary part of the right-hand side of (4) can take any values when z approaches α . This contradicts (3). This shows that

$$p(z) \neq 0$$
 in E

Therefore, if there exists a point $z_0 \in E$ such that

$$\operatorname{Re} p(z_0) = 0$$

then we have $p(z_0) \neq 0$. From Theorem 1, we obtain

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik$$

where k is real and $k \ge 1$. This contradicts (3). This completes our proof.

Acknowledgment. The author sincerely appreciate the suggestions which were made by the referee.

References

- I. S. Jack: Functions starlike and convex of order α. J. London Math. Soc., 3, 469-474 (1971).
- [2] S. S. Miller and P. T. Mocanu: Second order differential inequalities in the complex plane. J. Math. Anal. Appl., 65, 289-305 (1978).

No. 6]