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1. Introduction. Let A(p) be the class of functions of the form
L.1) F@=+ 3 azt (edl={L,2,3, D
=p+1

which are analytic in the unit disk U={z: |2|<1}. For f(2)e JA(p), we
define

1.2) Lf(&)= (@) (@>0)
and
1.3) I,,f(z)=%ﬁ L.f®dt (e

For f(z) belonging to the class _4(1), Thomas [4] has shown
Theorem A. If f(2) e AQ) satisfies

1.4) Re { f'(z)(%)“}w )

for some a («>0), then

1.5) Re (I,.f(2) z7.(r)>71,Q),
where n e J,={0,1,2, - - -} and

1.6 0<T,(n=—1+2a 3 (ZDTrT"

( . ) rn/r - + ak:l k”(k._l-{-a) .

Equality occurs for the function f(z) defined by

1.7 f(z)=<oz L t““(-il—i)dt)l/a.

For n=0, (1.5) becomes

S EE It
- G

which reduces to
—1+E log (1+47)
r

when a=0.
Also, Hallenbeck [1] has proved
Theorem B. If f(2) e AQ) satisfies
1.9 Re {f"()}>0 (ze ),
then
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(1.10) Re (@)g—l-ﬁ.log A7)
r
>—1+2log 2.
Equality is attained for the function f(z) defined by
@.11) f(R)=—z+21og (1+2).

Remark. Theorem A is a generalization of Theorem B.
Further, Owa and Obradovié [3] have given

Theorem C. If f(2) e AQ) satisfies

1.12) Re { f'(z)(i(;_))“}w (2 e V)
for some a («>0), then
1.13) Re {( f(:) )}> 1+12a (ze V).

Remark 2. Theorem A is an improvement of Theorem C.
Some properties of I,. We begin with the statement and the proof of
the following result.

Theorem 1. If f(z) e A(p) satisfies
@1 Re {#O/E 50 ey

for some a («>0), then
(2.2) Re (I, /(@) =7.(r)>7.),
where n e Jl, and

2.3) 0<T, (= —1+2pa 3 (DT
. )= —1+ pak; b1+ pe) .

Equality in (2.2) is attained for the function f(z) given by

z pa-1 1 _t 1/a
2.4) f(z)= (poz JO t (I—H)dt> .
Proof. Since the condition (2.1) implies that
2.5) Re {f'(z) ( J@) )"'1}>0 e ),
pzl’—l 2P
the function A(z) defined by
2.6) W)= (z> ( J (f) )
Pz 2
satisfies Re (h(2))>0 (z € U) and h(0)=1. It follows that
f(z) a_l’_q_ # pa-1
@) (L2) =22 [ pre-sntrat,
that is, that
(2.8) Re (I,/(2))=Re {(I.g_))}

—Re {l’i'i j ’ t”““‘h(t)dt}.
2P Jo

Writing 2=re*’ and t=pe'’ in (2.8), we have
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2.9) Re (I, f(z))=_€% j 0 0"~ Re {h(oe")}dp.

Note that the function h(z) satisfying Re (2(2))>0 (ze U) and h(0)=1
satisfies
1—|z]

(2.10) Re (h(z))= (zeU)
1+]2|
(cf. MacGregor [2, p. 532]). Thus (2.9) leads to
11 >pa (7 pa-1<1—0
@.11) O e L )do
0 ___1)k+1rk—-l
—_142 (=DFhrtt
tepa =1 k—14-pa
=7,(7).
It is easy to see that
2.12) Re (I,f(2))=Re {l I 1, f(t)dt}
V4 0

1 I Re {I,/(0e"")}dp
r 0

>1 j’ <—1+2pa s L:M)dp
r 0

=1 k—14pa
o —1)k+1pk-t
=—142 (D)t
20 110
=Tl(/r)'
Therefore, using the mathematical induction, we see that
o —1)k+1pk-t
2.13 Re (I, /()= —1+2pa 3, D™
(2.13) e(l,.f(&)z—1+2pa 3, b1+ pe)
=7,(7).
Let the function ¢,(r) be defined by
2, (—=1)k+ipk-t
(2.14) S (P)=pa > —~— 2 O<r<L).

=1 k"(k—1+pa)
Then ¢,(r) is absolutely convergent for n (n € Jl,) and for » (0<r<1). Thus
the suitably rearranging pairs of terms in ¢,(r) give that 1/2<¢,(r)<1.
This also gives that 0<7,(r)<1. Further, since

2.15) r¢,,(r)=ﬂ bor(ddo  (neD),

we have that ¢,(r)<<0 and 7,(r) decreases with » as » tends to 1 for fixed =,
and increases to 1 when n—oco for fixed ». This completes the proof of
Theorem 1.

Remark. If we take p=1 in Theorem 1, then we have Theorem A by
Thomas [4].

Letting a«=1/p, Theorem 1 leads to

Corollary 1. If f(z) e A(p) satisfies

Re (f'(2)f(z)"*-H>0 (ze ),

then
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Re ./ () =1.(r)>1,Q),
where n e Jl, I,f(2)=f(2)"?/z, and
( 1)k+1Tk—1
0<7r,(r)=—-142 Z_; e
Equality is attained for the function f(z) defined by
S@)=(—z+2log 1 +2))".
Taking p=1 in Corollary 1, we have
Corollary 2. If f(2) e AQ) satisfies Re (f'(2))>0 (z € U), then
Re (I, /() =1, >7,Q),
where ne Jly, I, f(2)= f(2)] 3, and
( 1)k+1,,.lc—1
0<r,(M=~-14+2 Z A U
=1 kn+1
Equality is attained for the function f(z) given by
f(@)=—z+4+21log 1+%2).
Remark. When n=0 in Corollary 2, we have Theorem B by Hallenbeck
[11.
Further, making a=1 in Theorem 1, we have
Corollary 3. If f(2) e A(p) satisfies

{f(z)}>o (e,

<1

1.

then
Re (I, f(2)=7.(r)>7.,Q),
where ne Iy, 1,f(2)=f(2)/2?, and
o ( 1
0<r=—142p 2, < e T
Equality is attained for the function f(z) given by (2.4) for a=1.
3. Integral operator J,. Next, for f(z) in J(p), we introduce

)k+1 k-1

3.1) Jof (@)= f (@)
and
(3.2) T f(2)= “+1 f o] _f®dt (e,

where o> —1.
For the above integral operator J,, we derive
Theorem 2. If f(2) e J(p) satisfies

(3.3) Re{f(z)}>oz (ze V),
where a<l, then
(3.4) Re (J,.f () =7,(r)7r.1),
where n e Jl, and

(—1)"

Equality in (3.4) is attained for the fzmctwn f(?) defined by
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(3.6) F@=azr+(1 —oz)z"( L:Z )
Proof. For n=0, (3.4) is trivial. For n=1, we have
3.7 air (L o7, f(t)dt) - air (L t“"’f(t)dt)
A(12)e

=z%e"(a+ (1 —a)h(z)),
where z=re" and h(2)=/(2)/#*. Since Re ()= —p)/A+p) 0=<p<D),
for a>—1,

3.8) Re (J.f(2))= Re {“+1 j teJ (t)dt}
2222 ] fesa-nli52
a+1

L L e(rr2a-a 5 o)

—1+20+D0-0 5

1 k4+a4-1
Thus (3.4) holds true for n=1.

Further, assuming that (3.4) holds true for any n, and letting t=pe",
we have

(3.9 ReW,./@=Re {“FL ['107, tyar)

a+11 j 0® Re {J,f(pe')}dp

a+1 . (— 1)k k+a
= pari ( ‘+2(a+1)"(1 —a) g(—k;’*_*_—l);)dp

=rn+l(r)'
Also, we see that 0<7,(r)<1 which completes the assertion of Theorem 2.
Taking a=p/(p+ ), >0, in Theorem 2, we have
Corollary 4. If f(z) e J(p) satisfies

J(@) P
(3.10) Re {7}>m (e ),
where >0, then
(3.11) Re (J,.f () =1.(n)>7,Q),
where n e Jl, and
_ n ,8 < (—'r)k
(3.12) 0<7,(N=1+2(a+1) (p+ﬁ) 2 ey

Equality in (3.11) is attained for the function f(z) defined by

(3.13) f(z):ﬁ?( 2P+ ,sz(]1~+z ))
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