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(Communicated by Shokichi IYANAGA, M. J. A.,, March 12, 1991)

Abstract: Completely uniformly distributed (c.u.d.) functions can be defined
similarly to c.u.d. sequences but their properties are significantly different. In
the first part of this paper it is shown that special entire functions are c.u.d.
and well distributed. Furthermore polynomials and the exponential function are
discussed. In a final sections it is proved that almost no functions are c.u.d.
with respect to Wiener measure but it is possible to find explicitly a distribution
function different from the uniform distribution such that almost all functions
are completely distributed with respect to these distribution functions.

1. Introduction. A measurable function z: [0, co)—R* has distribu-
tion function F(y) (W=, - -+, Yx-1) € I¥=[0, 11¥) modulo 1 if

(1) }jm Fo(y, 2)=F(y) (yel"),

where F .(y, 2(t)) is the empirical distribution function
T

(2) Falw, o®)=7 [ Lnndatdt

of the fractional part {z(t)} of =(t). ({z}=2—I[2], [2]=max{ne Z: nLz},
and 1 ,, is the characteristic function of the interval [0, y]= [1£5'[0, y,]. If
F(y)=T1% v, and (1) holds then x(¢) is called uniformly distributed modulo
1 (u.d.).

A measure for the convergence in (1) is the discrepancy
(3) D (x(t), F)= sup |Fr(y, () —F(y)|

and it is easy to show that x(¢) has distribution function F'(y) (F-d.) if and
only if
(4) lim D (2(t), F)=0.

T

The distribution function can be interpreted as “measure for the depend-
ence” of the components (x,(t), - - -, Tz _1(t)) of z(t). Of course a distribution
function need not exist. But it has been shown ([6], [4]) that almost all
functions z: [0, 0)—R¥ are u.d. (in the sense of Wiener measure).

Now let z(t) be a one-dimensional function x: [0, 0)—>R. The object
of this paper is to discuss the distribution behaviour of shifts of this func-
tion, namely the distribution of
(5) 275 () =(2(t), 2t +7,), - -+, Xt +15-1)),
where 9=(z,);., is a given strictly monotone shifting sequence with ;>0
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and lim,_, r,=oc0. If there exist distribution functions F', such that x7=(t)
is F'x-d. for all K>1 then 2(¢) is called completely F . -distributed with
respect to I (9d-c.-F-d.) and if x7%(¢) is u.d. for all K>1 then «(%) is called
completely uniformly distributed with respect to I (4-c.u.d.). If x(t) is
g-c.u.d. for all possible shifting sequences I=(zr,)i., then we will call 2(¢)
completely uniformly distributed (c.u.d.).

In section 2 it is shown that there exist c.u.d. functions and some
special examples are discussed. In section 3 it is proved that almost no
functions are 9-c.u.d. but for every shifting sequence J'=(z,)i ., there exist
distribution functions F';, such that almost all functions are J-c.-F'y-d. (In
fact a little bit more general result will be shown.)

It should be noticed that this concept of c.u.d. functions is similar to
that known for sequences. A real sequence (2,).; is c.u.d. mod 1 if the K-
dimensional sequences (&,, Z,.1, - - *» £,.x-1) are u.d. mod 1 for all K>1. It
is interesting that the results for functions are significantly different from
those known for sequences (see [7]).

2. Basic results. First we will prove

Theorem 1. Let f(z)=2 7., a,2" be an entire function but not a poly-
nomial with real Taylor coefficients a, and
(6) lim sup log log M(R) <

R0 loglog R
where M(R)=max, .| f(2)]. Then x(t)=f(t) is c.u.d.

Proof. By Weyl’s criterion ([7]) a function «(¢) is c.u.d. if and only

if the one-dimensional functions

(7) how(t)+h1x(t+f1)+ e +hK—1x(t+TK—l)

are u.d. for all shifts r, and integral lattice points h=(h,, -- -, hy_,) €
Z5\{0, -+, 0). But

(8)  0@=g hfGred=5 (5 L o= 55 (5 huet) L2

is again a function of type (6). Furthermore g(z) is not constant because
> s hyti0 for almost all n and f™(z)=const. for all n since f(z) is not a
polynomial. Thus by [3] the function y(¢)=g(¢) is u.d. modulo 1.

Theorem 1 has an interesting corollary, for it implies that there are
c.u.d. functions that are well distributed, too. A function z: [0, c0)—R is
well distributed if
(9) lim sup D (x(t+f), kKn: yk) —

T—oo 12>

It is known that a convex functlon x(t) is always well distributed [2]. Thus
we have as a

Corollary. Let f(z) be an entire function as in Theorem 1 with non-
negative Taylor coefficients a,. Then 2(t)= f(t)is c.u.d. and well distributed.

This corollary is interesting insofar because c.u.d. sequences and well
distributed sequences are disjoint ([7]).

Next we discuss polynomials and the exponential function.
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Theorem 2. Let 2(t)=p,(t) be a polynomial of degree N. Then x(t)
is not c.u.d. But for every shifting sequence I=(zr,)i_, x(t) is I-c.-F -d.
for proper continuous distribution functions Fr. For example, if N>2
and the numbers r, are linear independent over the rationals then xz(t) is
g-c.u.d.

Proof. If r,=K then the N+42 functions z(¢), z(t+1), - - -, 2(t+N+1)
are linear dependent over Z since the system of linear equations

(10) St (0=0,1, - -, N+1)
%=0

has integral solutions different from (0, - - -, 0). Therefore z(¢) is not c.u.d.
Now let I=(r,)7.; be any shifting sequence. If x7%(t) has a distribution
function F', then (e(x)=e***®)

K1 . 1 (7 (K=
Cy =J1K 6<kz=(:’ hkyk>dFK(y)=hm w e ( Z hkx(t—‘_fk))dt

T-w T Jo \iZo

K-1 K-~-1

_{e(aN 5 h,;,ef) it ST her=0 (=0, --.,N—1)

= k=0 k=0
0 otherwise.

By Wiener-Schoenberg-theorem it suffices to show that

(12) lim ICh [2_—_"0.

Hoowo HE nio<H

11)

But this sum can be estimated by O(H-¥-'). Therefore there exists a
continuous distribution function F'g.

If the numbers z, are linear independent over the rationals then c,=0
if and only if h=(0, - - -, 0). So z(#) is J-c.u.d. in this case.

The exponential can be treated in a similar way. One only has to
discuss the linear combinations
13) T hatte)=e 3 het
to get

Theorem 3. Let z(t)=¢e'. Then x(t) is not cu.d. If T=(r)p-, is
any shifting sequence then x(t) is I-c.-F -d. for proper continuous distri-
bution functions F', and is I-c.u.d. if and only if the numbers e are linear
independent over the rationals.

Remark. It is not very difficult to get asymptotic estimates (T'— o)
for the discrepancy for every K in these examples but it seems to be very
difficult to get uniform estimates in K and T'.

3. Metric results. We want to discuss metric properties with re-
spect to Wiener measure g, that is defined on proper subsets of the space
C of continuous functions «: [0, co)—R with 2£(0)=0. The transition den-

sities of the stochastic process that is related to Wiener measure is given
by
1
14 t; @, Y)=-—z—e TV,
(14) p(E; @, y) Jont
If f: R*—C is a measurable function and 0<¢,< - - - <, then
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as | s, -, atdu @

K
=IRK J@y, -, L) ,Lllp(tk—tk-l 3 Lpoyy £)AT, - - - dXg.
(t,=0, 2,=0). So, if (@), xt+7), -+, 2(t+7%-)) has a distribution Fj
almost surely (a.s.) then the Fourier coefficients of the density function f
can be evaluated by
T
lim _;_ j CehaaO)+ -+ g @bt 7))t ()

C T—co

if Byt +he ;=0
0 otherwise.
So it might be expected that for almost all functions «(¢) the distributions
of (x(t), x(t+7y), - - -, 2(t+7,_-1) have density functions
K-1 /K-1 2
STx@Wo « - s yK—l)=h Z exp {“27’-’2[2 (FZ,C: hi) (%"%-1)]}

1r0ees hk-1€Z k=1

amn xe(’j\: hk(yk—yo))

K-1
= Z Z P(te—Tx-13 Yor Y+ 1)

l1,2lg-1€Z k=1
First we state a law of the iterated logarithm without proof since it is not

very difficult. (It uses standard methods, and is rather technical (see [1])).
Theorem 4. Let T=(r)¢., be a fized shifting sequence and F distri-
bution functions with density (17). Then, for every K>O0 there exist
positive constants cq,, >0 such that
: TD(x™%(t), Fx) _
a8 i sup = g Tog 7~ O

Corollary. Let 9=(z,)i., and F, be as in Theorem 4. Then almost
all functions x(t) are G-c.-F-d. and therefore almost no functions are
g-c.u.d.

We will prove this corollary in a little bit more general context. Let
K(T) be a positive monotone function with lim,_. . K(T)=oc0 and I=(z,);; a
shifting sequence. Then a function x(¢) is called K(T)-9-c.-F -d. if
a9 lim D (27tx1(2), Fix 1)) =0.

T—oo
Trivially every K(T)-9-c.-F,-d. function is Y-c.-F'~-d. and on the other
hand if «(t) is Y-c.-F'x-d. then there exists a proper function K(T) such
that x(t) is K(T)-9-c.-Fx-d. Next we will prove
Theorem 5. Let 9=(z,);., be a shifting sequence satisfying

(16) {3—2#2[(h1+'**+hx—1)3f1+ (ha++ee+hg—D2(ea—t) + oo+ R (g 1= 9)]

a.s.

(20) n<kE" and t,—re >k (k>ky)

with 7, >0 and K(T) a positive monotone function with
log T

21) KD<o | o8l (721

such that 8*1+7/2+0/4)<1. Then almost all functions x(t) are K(T)-I-c.-
Fy-d. with respect to Wiener measure and density functions f, defined in
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an.

Proof. Set
2 S L (" (5 noawt+z,) )dt
©22) T,,,(x)=—T—j0 e(z kx( +fk)) .
Then

[ 187 @Pdpa
=% LT j: L e (;T: Rt +7)— x(s+rk))>d,aw(x)dsdt

=_’:l’27 J:H J:—tx" L e (:2: h (2t +7,) — 2(s+ r,c)))d;zw(w)dsdt + O(TLT'i)

2 a5 (S n)'+(Z, 9)")

(23) r
T 1—e2=7(E m)* -
X K-1 2 - K-1 4 +O< I;’ ‘)
_ (k) 4D
k=0 %=0
K~-1
if h,+#0
k=0
cg+0(fK-*> it S h,—o.
T =0
So we have in general
24) [ 1Sz —crPdp @ =0(5)
c
which implies that
25) iw(@eC: |ST,h(x)—ch|2,7})=o<;§1—;).
Using a generalized Erdos-Turan-inequality ([5])
3V (21Skl 1 )
26 7x(t), F (_) (_x_ 1 g
(26) D (27=(%), Fr)< B T +o<||rf1VT:'°sH ") [Sz.n— ¢l

(r(h)=T]£tmax(d, |k,))) and the Borel-Cantelli-lemma it suffices to find
sequences T, u,, H, (i>1%,) such that
(i) lim L1

i—co 4

(i) lim (%)K(T”m(log Hyo_0

{—00
. 3 \KT) 1 KT 1
() }EB (E) ‘FZ kU1 (1 + «/277:(71:—'%-1)) =0
(v) 3 _Ml_(log L)K(W < 0.
1210 77%+K(T1)Ti 7
Namely, (ii), (iii), and (iv) imply that almost all functions satisfy
(28) lim D, (275 @01(t), Fig 7,7 =0.

i— 00

Now (28) and (i) ensure that (19) holds a.s.

@70
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For the purpose to construct such sequences choose some >>4/2+ 60 /4
such that 76°/24-6°/24+p5=1—¢ for some ¢>0 and set T,=%¢, 7=
e FisTilslosTi gnd H,=(y,(log1/5)*")-'. Then it is easy to show that the
four conditions of (27) are satisfied. So the proof of Theorem 5 is complete.

Remark. The corollary of Theorem 4 is not a direct consequence of
Theorem 5 but it is easy to derive it from the preceding proof.
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