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Contributions to Uniformly Distributed Functions. II
Completely Uniformly Distributed Functions*)
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Abstract: Completely uniformly distributed (c.u.d.) functions can be defined
similarly to c.u.d, sequences but their properties are significantly different. In
the first part of this paper it is shown that special entire functions are c.u.d.
and well distributed. Furthermore polynomials and the exponential function are
discussed. In a final sections it is proved that almost no functions are c.u.d.
with respect to Wiener measure but it is possible to find explicitly a distribution
function different from the uniform distribution such that almost all functions
are completely distributed with respect to these distribution functions.

1. Introduction. A measurable function x" [0, oo)-R has distribu-
tion function F(y) (Y=(Y0,"" ", YK-1)e IK-- [0, 1]z) modulo 1 if
(1) lim Fr(y, x(t))=F(y) (y e I),

T-

where Fr(y, x(t)) is the empirical distribution function

1; lo( 2 ) Fr(y, x(t))---
o the fractional part {x(t)} of x(t). ({z}=z-[z], [z]=max{n e Z" nz},
and l0,a is the characteristic function of the interval [0, y] ]-I ff:0 [0, y]. If
F(y)= [] :01 y and (1) holds then x(t) is called uniformly distributed modulo
1 (u. d.).

A measure for the convergence in (1) is the discrepancy
( 3 ) Dr(x(t), F)=sup lEt(y, x(t))--F(y)[

yIK

and it is easy to show that x(t) has distribution function F(y) (F-d.) if and
only if
( 4 ) lim Dr(x(t), F)--O.

T--

The distribution function can be interpreted as "measure for the depend-
ence" of the components (x0(t), ..., x_(t)) of x(t). Of course a distribution
function need not exist. But it has been shown ([6], [4]) that almost all
functions x" [0, oo)-.R are u.d. (in the sense of Wiener measure).

Now let x(t) be a one-dimensional function x" [0, oo)-R. The object
of this paper is to discuss the distribution behaviour of shifts of this func-
tion, namely the distribution of
5 ) xK()--(x(), x(t-+-rl), ..., x(tq-r_l)),

where =(r.)__l is a given strictly monotone shifting sequence with r0
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and lim r= c. If there exist distribution functions F such that x(t)
is F-d. for all K:>I then x(t) is called completely F-distributed with
respect to g[ (-c.-F-d.) and if x(t) is u.d. for all KI then x(t) is called
completely .uniformly distributed with respect to (-c.u.d.). If x(t) is
-c.u.d. for all possible shifting sequences =(r)= then we will call x(t)
completely uniformly distributed (c. u. d.).

In section 2 it is shown that there exist c.u.d, functions and some
special examples are discussed. In section 3 it is proved that almost no
functions are -c.u.d. but for every shifting sequence =(r)= there exist
distribution functions F such that almost all functions are -c.-F-d. (In
fact a little bit more general result will be shown.)

It should be noticed that this concept of c.u.d, functions is similar to
that known for sequences. A real sequence (x):= is c.u.d, mod 1 if the K-
dimensional sequences (Xn, Xn+l, ", Xn+K_I) are u.d. mod 1 for all KI. It
is interesting that the results for functions are significantly different from
those known for sequences (see [7]).

2. Basic results. First we will prove
Theorem 1. Let f(z)==o anzn be an entire function but not a poly-

nomial with real Taylor coecients a and

6 ) lira sup log log M(R) 3- log log R
where M(R)=max,[f(z)]. Then x(t)=f(t) is c.u.d.

Proof. By Weyl’s criterion ([7]) a unction x(t) is c.u.d, if and only
if the one-dimensional functions
( 7 hox(t) + hx(t+ rl) +... + h_lx(t+
are u.d. for all shifts and integral lattice points h=(h0, ...,h_l)e
Z{(0, ...,0)}. But

8 ) g(z)= hf(z+r) h f((r) z hr f)(z)
=o =o=o

is again a function of type (6). Furthermore g(z)is not constant because
0 for almost all n and f()(z)const, for all n since f(z) is not a

polynomial. Thus by [3] the function y(t)=g(t) is u.d. modulo 1.
Theorem 1 has an interesting corollary, for it implies that there are

c.u.d, functions that are well distributed, too. A function x" [0, )R is
well distributed if

( )9 ) lim sup Dr x(t+r), y =0.
T 0 k=

It is known that a convex function x(t) is always well distributed [2]. Thus
we have as a

Corollary. Let f(z) be an entire function as in Theorem 1 with non-
negative Taylor coecients an. Then x(t)= f(t) is c.u.d, and well distributed.

This corollary is interesting insofar because c.u.d, sequences and well
distributed sequences are disjoint ([7]).

Next we discuss polynomials and the exponential function.



No. 3] Contributions to Unifo.rmly Distributed Functions.. II 75

Theorem 2. Let x(t)=p(t) be a polynomial of degree N. Then x(t)
is not c.u.d. But for every shifting sequence /=(r)_-i x(t) is -c.-FK-d.
for proper continuous distribution functions F. For example, if N>_2
and the numbers are linear independent over the rationals then x(t) is
-c.u.d.

Proof. If K then the N+2 functions x(t), x(t+ 1), ., x(t+N+1)
are linear dependent over Z since the system of linear equations

N+I

(10) hk (n O, 1, N+l)
k=0

has integral solutions different from (0, ..., 0). Therefore x(t) is not c.u.d.
Now let =(r)= be any shifting sequence. If x(t) has a distribution
unction F then (e(x)=e)

c= e(hy)dF(y)=lim--l e(hx(t+r))dtIK k=0 T T k=0

(II) -1

_--[e(a=o hr) if hr=0=0 (n=0,...,N-l)

0 otherwise.
By Wiener-Schoenberg-theorem it suffices to show that

(12) lim E c]=0.

But this sum can be estimated by O(H-V-’). Therefore there eists a
continuous distribution function F.

If the numbers z are linear independent over the rationals then cn =0
if nd only if h=(0, ..., 0). So x(t) is -c.u.d. in this case.

The exponential can be trea%ed in a similar wy. One only has to
discuss the linear combinations

K-I K-1

(13) hx(t+)= e he
=0 =0

to get
Theorem 3. Let x(t)=et. Then x(t) is not c.u.d. I/ 9=(z)L is

any shi/ting sequence then x(t) is -c.-F-d. /or proper continuous distri-
bution/unctionsF and is 9-c.u.d. i/and only i/ the numbers e are linear
independent over the rationals.

Remark. It is not very dicult to get asymptotic estimates (T)
for the discrepancy for every K in these examples but it seems to be very
dicult to get uniform estimates in K nd T.

3. Metric results. We wnt to discuss metric properties with re-

spect to Wiener measure that is .defined on proper subsets of the space
C of continuous functions x" [0, )oR with x(0)=0. The transition den-
sities of the stochastic process that is related to Wiener measure is given

by
1(14) p(t; x, y)= ___<_)/(u>.

If f" RoC is a measurable function and 0< t,<... <t then
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(15) | f(x(t), ..., x(t))d/(x)
d

f(x, ..., x) 1-I (-t,_ _, )d....
RK =1

(to=O, x0=0). So, if (x(t), x(t
almost surely (a.s.) then the Fourier coefficients of the density functionf
can be evaluated by

lim--Xe(h0x(t)+ +h_x(t+r_))dtd(x)

(16) (e-(,+’’’+= if h0+. +h_=0
(0 otherwise.

So it might be expected that for almost all functions x(t) the distributions
of (z(t), x(t% r), ., x(t r_)) have density functions

f(Yo, "", Y-,)= exp --2[ h (r-r_,)
hl,’",hK-l@Z [k=l

(17)
K-1

irs we sae a law of the ieraed logarithm wihou roof since i is not
very dieul. (I uses sandard mehods, and is rather technical (see [1])).

Theorem 4. Let =(r)L be ed hitig eqeee giti-

btio Ietio ith geit (17). The, o ever K>0 there eit
oitie eott e>0 eh that

(18) lim su TDr((t)’) =e a.s.
r 2T log log T

CorollarT. Let =(r)L ag be i Theorem . The almost
ll Ietio (t) are -e.-P-d. therefore lmot o etio are
-e..g.

We will rove his corollary in a lile bi more general context. Let
K(T) be osiive monotone function wih limrK(T)=
shifting sequence. hen
(19) lira Dr(r(t), Nr?) 0.

rivially every K(T)--e.-N-d. funeion is -e.-N-d. and on he oher
hand if (t) is ff-e.-N-d. hen here exists a roper function K(T) such
ha (t) is K(T)--e.-N-d. Nex we will rove

Theorem 5. get

(0) d r--r_2 ()
with r, 0d K(T) oitie monotone Ietio ith

log T

ueh that (1+r/+/4)<1. The lmot ll Ietio (t) re K(T)--e.-
N-d. ith reeet to Wiener measure
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(7).
Proof.

(22)

Set

Sr,(x)= e\;0 hx(t+r) dr.

Then

c
Sr’(x) ldl(x)

2_T I Itoc e (:--01 h(x(t+r)-- x(s+ r)))dlw(x)dsdt
e h(x(t+) x(s+)) dgw(x)dsdt+ 0T _, c \o T

(23)

K-1 12 4 h
\k=O

c+O if h=0.
k=0

+0
T

K-I

if h:/:0
k=O

So we have in general

(24) ; ,Sr,(x)-c,dl,(x)=O(r-.)c T
which implies that

() ( c., ()-1_>})=o(,-’).
Using a generalized ErdSs-Turan-inequality ([5])

(26) Dr(xZ(t), F)
H

(r(h)= :3max(1,]hl)) and the Borel-Cantelli-lemma it suffices to find
sequences T, , H (iio) such that

(i) lim-T+=l
i Tt

(ii) lim (logH (r)= 0

(27)
(iii)

(iv)

Namely, (ii), (iii), and (iv) imply that almost all functions satisfy

(28) lim D,(xZ(r(t), F(r)) 0.

Now (28) and (i) ensure that (19) holds a.s.
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For the purpose to construct such sequences choose some fl512+Sa/4
such that /2/2/fl-1- for some e)0 and set T--im, --e-rr, and H-((log 1/])(r,)-. Then it is easy to show that the
four conditions of (27) are satisfied. So the proof of Theorem 5 is complete.

Remark. The corollary of Theorem 4 is not a direct consequence of
Theorem 5 but it is easy to derive it rom the preceding proof.
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