88. (2, 15)-torus Knot is not Slice in CP²

By Akira Yasuhara

Department of Mathematics, School of Science and Engineering, Waseda University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1991)

§ 1. Introduction. Unless otherwise stated all manifolds and maps are smooth.

Let M be a closed 4-manifold and K a knot in $\partial(M-\operatorname{Int} B^4)\cong S^3$ where B^4 is an embedded 4-ball in M. If K bounds a properly embedded 2-disk in $M-\operatorname{Int} B^4$, then we call the knot K a slice knot in M. Let Slice(M) be the set of slice knots in M. We note that $Slice(S^4)$ is unequal to the set of knots in S^3 (Fox and Milnor [1]) and $Slice(S^4)$ is a subset of Slice(M). In [5], Suzuki proved that $Slice(S^2 \times S^2)$ is equal to the set of knots in S^3 , and asked the question "Is there a 4-manifold M such that Slice(M) is equal to neither $Slice(S^4)$ nor the set of knots in S^3 ?". In this paper we shall prove the following theorem.

Theorem. The set $Slice(CP^2)$ does not contain a (2, 15)-torus knot.

It is easily seen that $Slice(S^4)$ is a proper subset of $Slice(CP^2)$ (for example, see Kervaire and Milnor [2]). Thus this theorem gives an affirmative answer to Suzuki's question.

The author wishes to thank Professor Shin'ichi Suzuki for his encouragement.

 \S 2. Preliminaries. In this section M means an oriented, connected, simply connected, closed 4-manifold. We need the following four lemmas to prove Theorem.

Lemma 1 (Rohlin [4]). If $\xi \in H_2(M; \mathbb{Z})$ is represented by an embedded 2-sphere in M, then

(a)
$$\left|\frac{\xi^2}{2} - \sigma(M)\right| \le \operatorname{rank} H_2(M; Z) \text{ if } \xi \text{ is divisible by 2,}$$

(b)
$$\left| \frac{\xi^2(p^2-1)}{2p^2} - \sigma(M) \right| \leq \operatorname{rank} H_2(M\;;Z) \; if \; \xi \; is \; divisible \; by \; an \; odd$$

where ξ^2 is the self-intersection number of ξ and $\sigma(M)$ is the signature of M.

Lemma 2 (Kervaire and Milnor [2]). Let $\xi \in H_2(M; Z)$ be dual to the Stiefel-Whitney class $w_2(M)$. If ξ is represented by an embedded 2-sphere in M, then $\xi^2 \equiv \sigma(M) \mod 16$.

Lemma 3 (Weintraub [6], Yamamoto [7]). Suppose $\xi \in H_2(M-\operatorname{Int} B^4)$, $\partial (M-\operatorname{Int} B^4)$; Z) is represented by a properly embedded 2-disk Δ in $M-\operatorname{Int} B^4$ and let K be a knot $\partial \Delta \subset \partial (M-\operatorname{Int} B^4)$. If the unknotting number of

K is u, then ξ is represented by an embedded 2-sphere in $M \sharp u(CP^2 \sharp \overline{CP^2})$. Here ξ is identified with its image

$$H_2(M-\operatorname{Int} B^4, \partial(M-\operatorname{Int} B^4); Z) \stackrel{\cong}{\longleftarrow} H_2(M-\operatorname{Int} B^4; Z) \longrightarrow H_2(M \sharp u(CP^2 \sharp \overline{CP^2}); Z).$$

Lemma 4 (Kuga [3]). Suppose M has the intersection form

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \oplus \langle 1 \rangle$$
,

with respect to generators α , β , γ of $H_2(M; Z) \cong Z \oplus Z \oplus Z$. If $x \geq 2$, $y \geq 2$, and $z^2 = 1$, then the homology class $x\alpha + y\beta + z\gamma$ cannot be represented by an embedded 2-sphere in M.

§ 3. Proof of Theorem. Let

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \oplus \langle 1 \rangle$$

be the intersection form of $S^2 \times S^2 \sharp CP^2$ with respect to generators α , β , γ of $H_2(S^2 \times S^2 \sharp CP^2; Z) \cong Z \oplus Z \oplus Z \oplus Z$. There exist mutually disjoint ten properly embedded 2-disks $\Delta_1, \dots, \Delta_{10}$ such that $\Delta_1 \cup \dots \cup \Delta_{10}$ represents $2\alpha + 8\beta \in H_2(S^2 \times S^2 - \operatorname{Int} B_1^4)$, $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$; $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ is the link as illustrated by Fig. 1. It is not hard to see that nine strips $\partial_1, \dots, \partial_9$ connecting the 2-disks $\partial_1, \dots, \partial_{10}$ can be chosen so that $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4) \cup \dots \cup \partial_9$ is an embedded 2-disk in $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ and so that $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ is a $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ is an embedded 2-disk in $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ and so that $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ is a $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ is an embedded 2-disk $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ which represents $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ is an embedded 2-disk $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ which represents $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$ is $\partial(S^2 \times S^2 - \operatorname{Int} B_1^4)$.

Suppose $Slice(CP^2)$ contains a (2, 15)-torus knot, then a (2, 15)-torus

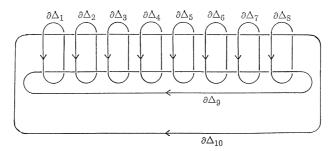


Fig. 1

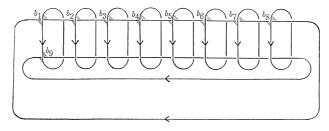


Fig. 2

knot bounds a properly embedded 2-disk D_2 in CP^2 —Int B_2^4 . This implies that there exists an integer z such that $z_{\gamma} \in H_2(CP^2 - \operatorname{Int} B_2^4)$; Z is represented by the properly embedded 2-disk D_2 in $CP^2 - \operatorname{Int} B_2^4$. Since there exists an orientation reversing diffeomorphism from the pair $(\partial(S^2 \times S^2 - \operatorname{Int} B_1^4), \partial D_1)$ to the pair $(\partial(CP^2 - \operatorname{Int} B_2^4), \partial D_2), 2\alpha + 8\beta + z\gamma \in H_2(S^2 \times S^2 \# CP^2)$ can be represented by the embedded 2-sphere $D_1 \cup D_2$ in $S^2 \times S^2 \# CP^2$.

If z is even, then $2\alpha + 8\beta + z\gamma$ is divisible by 2. By Lemma 1, we have

$$\left|\frac{-32+z^2}{2}-1\right| \leq 3.$$

Moreover, by using the fact that the unknotting number of a (2, 15)-torus knot is 7 and Lemma 3, we find that $z\gamma$ is represented by an embedded 2-sphere in $\mathbb{C}P^2 \sharp 7(\mathbb{C}P^2 \sharp \overline{\mathbb{C}P^2})$. By Lemma 1, we have

$$\left|\frac{z^2}{2} - 1\right| \leq 15.$$

We note that there is no even integer z which satisfies inequalities (1) and (2). Therefore z is not even. That is, either $z^2 = 1$ or z is divisible by an odd prime p. In the latter case, since $z\gamma$ is represented by an embedded 2-sphere in $CP^2 \sharp 7(CP^2 \sharp \overline{CP^2})$,

$$\left| \frac{z^2(p^2-1)}{2p^2} - 1 \right| \le 15,$$

by Lemma 1. It follows that

$$z^2 \le 32 \left(1 + \frac{1}{p^2 - 1}\right) \le 36.$$

This implies $z^2 = 9$ or 25.

On the other hand, since $2\alpha + 8\beta + z\gamma$ is dual to $w_2(S^2 \times S^2 \sharp CP^2)$, $z^2 \equiv 1 \mod 16$ by Lemma 3. Therefore we have $z^2 = 1$. However, $z^2 \neq 1$ by Lemma 4, a contradiction. Hence $Slice(CP^2)$ does not contain a (2, 15)-torus knot. This completes the proof.

References

- [1] R. H. Fox and J. W. Milnor: Singularities of 2-spheres in 4-space and cobordism of knots. Osaka J. Math., 3, 257-267 (1966).
- [2] M. A. Kervaire and J. W. Milnor: On 2-spheres in 4-manifolds. Proc. Nat. Acad. Sci. U.S.A., 47, 1651-1657 (1961).
- [3] K. Kuga: Representing homology classes of $S^2 \times S^2$. Topology, 23, 133-137 (1984).
- [4] V. A. Rohlin: Two-dimensional submanifolds of four-dimensional manifolds. Functional Anal. Appl., 5, 39-48 (1974).
- [5] S. Suzuki: Local knots of 2-spheres in 4-manifolds. Proc. Japan Acad., 45, 34-38 (1969).
- [6] S. H. Weintraub: Inefficiently embedded surfaces in 4-manifolds. Algebraic Topology Aarhus 1978 (eds. J. L. Dupont and I. H. Madsen). Lect. Notes in Math., vol. 763, Springer-Verlag, Berlin, New York (1979).
- [7] M. Yamamoto: Lower bounds for the unknotting numbers of certain torus knots. Proc. Amer. Math. Soc., 86, 519-524 (1982).