83. Embedding into Kac-Moody Algebras and Construction of Folding Subalgebras for Generalized Kac-Moody Algebras

By Satoshi NAITO
Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1991)

Introduction. In the preceding paper [5], we defined a regular subalgebra $\bar{\mathfrak{g}}$ of a symmetrizable Kac-Moody algebra $\mathfrak{g}(A)$, and showed that $\bar{\mathfrak{g}}$ is isomorphic to a generalized Kac-Moody algebra (=GKM algebra) $\mathfrak{g}(\overline{A})$ associated to a canonically defined symmetrizable GGCM \overline{A} , as explained below.

In the first half of this paper, we show that a symmetrizable GKM algebra $\mathfrak{g}(A)$ can be embedded into some Kac-Moody algebra as a regular subalgebra under a certain weak condition on the GGCM A. In the latter half of this paper, we introduce and study what we call a *folding subalgebra* of a symmetrizable GKM algebra $\mathfrak{g}(A)$, corresponding to a diagram automorphism π of the GGCM A. This subalgebra is contained in the fixed point subalgebra of an automorphism of $\mathfrak{g}(A)$ induced by π , and is easier to deal with than the fixed point subalgebra itself.

- § 1. Embedding of GKM algebras into Kac-Moody algebras.
- 1.1. Regular subalgebras. Here, we recall the notion of regular subalgebras of symmetrizable Kac-Moody algebras introduced in [5]. For the detailed accounts, see [2], [5], and [6]. Let $\mathfrak{g}(A)$ be a Kac-Moody algebra associated to a symmetrizable generalized Cartan matrix (=GCM) A over the complex number field C, and \mathfrak{h} its Cartan subalgebra.

Definition 1.1 ([5]). A subset $\bar{\Pi} = \{\beta_r\}_{r=1}^m$ of the root system Δ of $\mathfrak{g}(A)$ is called *fundamental* if it satisfies the following:

- (1) $\beta_1, \beta_2, \dots, \beta_m$ are linearly independent;
- (2) $\beta_i \beta_j \notin \Delta$ $(1 \leq i \neq j \leq m)$;
- (3) if β_i is an *imaginary root*, then it is a positive root.

For each imaginary root β_i , we define $\beta_i^{\vee} := \nu^{-1}(\beta_i)$, where $\nu : \mathfrak{h} \to \mathfrak{h}^*$ is a linear isomorphism determined by a *standard invariant form* $(\cdot | \cdot)$ on $\mathfrak{g}(A)$. For real root β_i , β_i^{\vee} has been defined as a dual real root of β_i . Then, we proved in [5] that $\overline{A} := (\overline{a}_{ij})_{i,j=1}^m$ with $\overline{a}_{ij} = \langle \beta_j, \beta_i^{\vee} \rangle$ is a symmetrizable generalized GCM (=GGCM), that is, \overline{A} satisfies the following:

- (C1) either $\bar{a}_{ii}=2$ or $\bar{a}_{ii}\leq 0$;
- (C2) $\bar{a}_{ij} \leq 0 \text{ if } i \neq j, \text{ and } \bar{a}_{ij} \in Z \text{ if } \bar{a}_{ii} = 2;$
- (C3) $\bar{a}_{ij} = 0$ implies $\bar{a}_{ji} = 0$.

Now, take and fix non-zero root vectors $E_r \in \mathfrak{g}_{\beta_r}$ and $F_r \in \mathfrak{g}_{-\beta_r}$ such that $[E_r, F_r] = \beta_r^{\vee} \ (1 \le r \le m)$. Then,

Theorem 1.1 ([5]). Let $\bar{\mathfrak{g}}$ be a subalgebra of $\mathfrak{g}(A)$ generated by E_r , F_r ($1 \le r \le m$), and a vector subspace \mathfrak{h}_0 of \mathfrak{h} such that the triple (\mathfrak{h}_0 , $\{\beta_r \mid \mathfrak{h}_0\}_{r=1}^m$, $\{\beta_r^\vee\}_{r=1}^m$) is a realization of the above GGCM \overline{A} . Then, $\bar{\mathfrak{g}}$ is canonically isomorphic to a GKM algebra $\mathfrak{g}(\overline{A})$.

This subalgebra \bar{g} is called a *regular subalgebra* of g(A).

1.2. Existence of an embedding. The symmetrizable GGCM \overline{A} associated to the GKM algebra $\mathfrak{g}(\overline{A})$, isomorphic to the regular subalgebra $\overline{\mathfrak{g}}$, satisfies the following *integrality condition* (INT):

(INT) For each i with $\bar{a}_{ii} \leq 0$, there exists a positive real number $\bar{\eta}_i$ such that $\bar{\eta}_i \cdot \bar{a}_{ij} \in \mathbb{Z}$ for every j ($1 \leq j \leq m$).

Here, we consider a converse problem.

Problem. Let $\overline{A} = (\overline{a}_{ij})_{i,j=1}^m$ be an arbitrary symmetrizable GGCM with the above integrality (INT). Then, can we embed the GKM algebra $\mathfrak{g}(\overline{A})$ into some Kac-Moody algebra as a regular subalgebra?

Note that, in considering the above problem, we can and do assume that the GGCM $\overline{A} = (\overline{a}_{ij})_{i,j=1}^m$ satisfies the following for some p and q such that p+q=m:

- (G1) $\bar{a}_{ii}=2$ $(1 \leq i \leq p)$,
- (G2) $\bar{a}_{jj} \le 0$ $(p+1 \le j \le p+q=m)$,
- (G3) $\bar{a}_{ij} \in \mathbb{Z}$ $(1 \leq i, j \leq m)$.

Then, we have the following theorem, which answers the above problem affirmatively.

Theorem 1.2. Let $\overline{A} = (\overline{a}_{ij})_{i,j=1}^m$ be a symmetrizable GGCM with the integrality (INT). And assume that \overline{A} satisfies (G1)–(G3). Then, the GKM algebra $\mathfrak{g}(\overline{A})$ is isomorphic to a regular subalgebra $\overline{\mathfrak{g}}$ of the Kac-Moody algebra $\mathfrak{g}(A)$ associated to the $2m \times 2m$ symmetrizable GCM given below:

$$A = (a_{ij})_{i,j=1}^{2m}, \ with \ egin{bmatrix} a_{2k-1,2l-1} & a_{2k-1,2l} \ a_{2k,2l-1} & a_{2k,2l} \end{bmatrix} dots = egin{bmatrix} ar{a}_{kl} & 0 \ 0 & 0 \end{bmatrix} & egin{pmatrix} 1 \leq k \leq p \ 1 \leq l \leq m, & l
eq k \end{pmatrix}, \ egin{bmatrix} a_{2k-1,2k-1} & a_{2k-1,2k} \ a_{2k,2k-1} & a_{2k,2k} \end{bmatrix} dots = egin{bmatrix} 2 & -1 \ -1 & 2 \end{bmatrix} & (1 \leq k \leq p), \ egin{bmatrix} a_{2k-1,2l-1} & a_{2k-1,2l} \ a_{2k,2l-1} & a_{2k-1,2l} \end{bmatrix} dots = egin{bmatrix} 2 ar{a}_{kl} \cdot u_k & 0 \ 0 & 0 \end{bmatrix} & egin{bmatrix} p+1 \leq k \leq p+q = m \ 1 \leq l \leq m, & l
eq k \end{bmatrix}, \ egin{bmatrix} a_{2k-1,2k-1} & a_{2k-1,2k} \ a_{2k,2k-1} & a_{2k,2k} \end{bmatrix} dots = egin{bmatrix} 2 & v_k \ v_k & 2 \end{bmatrix} & (p+1 \leq k \leq p+q = m), \ a_{2k,2k-1} & a_{2k,2k} \end{bmatrix} \ where & u_k dots = egin{bmatrix} -ar{a}_{kk} & ar{a}_{kk} = 0, \ 0 & a_{kk} = a_{kk} - 2 & (p+1 \leq k \leq p+q = m). \end{bmatrix}$$

Sketch of proof. Put $\beta_r := \alpha_{2r-1} + \alpha_{2r}$ $(1 \le r \le m = p + q)$, where $\{\alpha_r\}_{r=1}^{2m}$ is the simple root system of the Kac-Moody algebra $\mathfrak{g}(A)$. Then, $\{\beta_r\}_{r=1}^m$ is a fundamental subset of the root system Δ of $\mathfrak{g}(A)$. Therefore, we see from Theorem 1.1 that there exists a regular subalgebra $\bar{\mathfrak{g}}$ of $\mathfrak{g}(A)$, which is canonically isomorphic to a GKM algebra $\mathfrak{g}(\tilde{A})$ associated to the GGCM $\tilde{A} := (\langle \beta_j, \beta_j^{\vee} \rangle)_{i,j=1}^m$. On the other hand, we have

$$\langle \beta_j, \, \beta_i^{\vee} \rangle = \begin{cases} 2(\beta_i \, | \, \beta_j) \, / (\beta_i \, | \, \beta_i) & \text{if } \beta_i \text{ is a real root} \\ (\beta_i \, | \, \beta_j) & \text{if } \beta_i \text{ is an imaginary root,} \end{cases}$$

where $(\cdot | \cdot)$ is a standard invariant form on $\mathfrak{g}(A)$. So, we can show that, for a suitably chosen standard invariant form $(\cdot | \cdot)$ on $\mathfrak{g}(A)$, $\tilde{A} = \check{D}\overline{A}$, where \check{D} is an invertible diagonal matrix. Therefore, $\mathfrak{g}(\overline{A})$ is isomorphic to $\mathfrak{g}(\tilde{A})$ by rescaling the Chevalley generators. Hence we get the theorem.

- § 2. Folding subalgebras of a GKM algebra.
- 2.1. Diagram automorphisms of a GGCM. Let $A = (a_{ij})_{i,j=1}^n$ be a GGCM.

Definition 2.1. A permutation π on $I := \{1, 2, \dots, n\}$ is called a diagram automorphism of a GGCM $A = (a_{ij})_{i,j=1}^n$ if

$$a_{\pi(i),\pi(j)} = a_{ij}$$
 for every $i, j \ (1 \le i, j \le n)$.

Since a diagram automorphism π is a permutation on I, we have a unique decomposition of I into its disjoint subsets I_j $(1 \le j \le m)$, such that the restriction of π to I_j is a cyclic permutation $(1 \le j \le m)$.

Lemma 2.1. For every j_1 , j_2 $(1 \le j_1, j_2 \le m)$ and i_1 , $i_2 \in I_{j_1}$, we have $\sum_{k \in I_{j_2}} a_{k,i_1} = \sum_{k \in I_{j_2}} a_{k,i_2}$.

In view of Lemma 2.1, we set $\overline{a}_{ij} := \sum_{k \in I_i} a_{kl}$ for $l \in I_j$ $(1 \le i, j \le m)$, which does not depend on the choice of $l \in I_j$.

Lemma 2.2. If $\bar{a}_{ii} = \sum_{k \in I_i} a_{kl}$, $l \in I_i$, is a positive real number, then the Dynkin diagram $S(A^i)$ of the principal submatrix $A^i := (a_{kl})_{k,l \in I_i}$ of A is either of the following two forms:

Case (I). $S(A^i)$ is a disjoint union of Dynkin diagrams of type A_1 ;

Case (II). $S(A^i)$ is a disjoint union of Dynkin diagrams of type A_2 .

We now consider the case where $A = (a_{ij})_{i,j=1}^n$ is an indecomposable, symmetrizable GGCM. Fix a decomposition of A: A = DB, where $D = \operatorname{diag}(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ ($\varepsilon_i > 0$, $1 \le i \le n$), and ${}^iB = B$.

Lemma 2.3. Let π be a diagram automorphism of an indecomposable, symmetrizable GGCM A. Then, we have $\varepsilon_{\pi(i)} = \varepsilon_i$ for every i $(1 \le i \le n)$.

2.2. Construction of folding subalgebras. Let $A = (a_{ij})_{i,j=1}^n$ be an indecomposable, symmetrizable GGCM.

Now, for i $(1 \le i \le m)$, we say "Case X(i)" in the case where $\bar{a}_{ii} \le 0$, or in the case where $\bar{a}_{ii} > 0$ and Case (I) in Lemma 2.2 happens. And we say "Case Y(i)" in the case where $\bar{a}_{ii} > 0$ and Case (II) in Lemma 2.2 happens. Then, we put

$$(2.1) \qquad \hat{A} := (\hat{a}_{ij})_{i,j=1}^m \quad \text{with } \hat{a}_{ij} := \begin{cases} \bar{a}_{ij} & \text{in Case } X(i) \\ 2\bar{a}_{ij} & \text{in Case } Y(i). \end{cases}$$

Moreover, we put for i $(1 \le i \le m)$,

$$\begin{array}{ll} H_i \! := \! \sum_{k \in I_i} \alpha_k^{\vee}, & E_i \! := \! \sum_{k \in I_i} e_k, & F_i \! := \! \sum_{k \in I_i} f_k & \text{in Cass } X(i), \\ H_i \! := \! 2(\sum_{k \in I_i} \alpha_k^{\vee}), & E_i \! := \! \sqrt{2} \left(\sum_{k \in I_i} e_k \right), & F_i \! := \! \sqrt{2} \left(\sum_{k \in I_i} f_k \right) & \text{in Case } Y(i), \end{array}$$

where e_i , f_i $(i \in I)$ are the Chevalley generators, and $\{\alpha_i^{\vee}\}_{i \in I}$ is the set of all simple coroots of the GKM algebra $\mathfrak{g}(A)$.

Proposition 2.1. \hat{A} is an indecomposable, symmetrizable GGCM.

Remark 2.1. Even if A is a GCM, \hat{A} is not a GCM except for the case where, for every i $(1 \le i \le m)$, Case (I) or Case (II) in Lemma 2.2 happens.

Let $\hat{\mathfrak{g}}$ be a subalgebra of $\mathfrak{g}(A)$ generated by E_i , F_i , and H_i $(1 \le i \le m)$. Note that $\hat{\mathfrak{g}}$ is actually contained in the derived subalgebra $[\mathfrak{g}(A), \mathfrak{g}(A)]$ of the GKM algebra $\mathfrak{g}(A)$, since E_i , F_i , and H_i $(1 \le i \le m)$ lie in it.

Definition 2.2. We call the above subalgebra $\hat{\mathfrak{g}}$ the *folding subalgebra* of $\mathfrak{g}(A)$ corresponding to a diagram automorphism π of A.

Theorem 2.1. Any folding subalgebra of $\mathfrak{g}(A)$ is canonically isomorphic to the derived algebra of a symmetrizable GKM algebra. Let $\hat{\mathfrak{g}}$ be a folding subalgebra of $\mathfrak{g}(A)$ generated by E_i , F_i , and H_i $(1 \le i \le m)$. Then, the canonical isomorphism Φ of the derived algebra $[\mathfrak{g}(\hat{A}), \mathfrak{g}(\hat{A})]$ onto $\hat{\mathfrak{g}}$ is given as:

 $\Phi(\hat{e}_i) = E_i, \quad \Phi(\hat{f}_i) = F_i, \quad and \quad \Phi(\hat{\alpha}_i^{\vee}) = H_i \quad (1 \le i \le m).$

Here \hat{e}_i , \hat{f}_i (1 $\leq i \leq m$) are the Chevalley generators, and $\{\hat{\alpha}_i^{\vee}\}_{i=1}^m$ is the set of all simple coroots of the GKM algebra $\mathfrak{g}(\hat{A})$ associated to the GGCM \hat{A} in (2.1).

- Remark 2.2. From the above theorem, we see that, under the operation of making folding subalgebras, the category of the derived algebras of Kac-Moody algebras is not closed (see Remark 2.1), but that for GKM algebras is closed.
- 2.3. Type of the GGCM \hat{A} . First, note that the classification theorem in [2, Chap. 4] for GCMs also holds in the case of indecomposable GGCMs, except that there exists one additional affine matrix—the zero 1×1 matrix. We call an indecomposable GGCM A of hyperbolic type, if it is symmetrizable, of indefinite type, and if every proper indecomposable principal submatrix of A is a GGCM of finite or affine type. Then, we have the following theorem.

Theorem 2.2. Let $A = (a_{ij})_{i,j=1}^n$ be an indecomposable, symmetrizable GGCM, and \hat{A} a GGCM defined in (2.1). If A is a GGCM of finite (resp. affine or indefinite) type, then \hat{A} is again a GGCM of finite (resp. affine or indefinite) type. Further, if A is a GGCM of hyperbolic type, then \hat{A} is again a GGCM of hyperbolic type.

- Remark 2.3. In the case where A is a GCM of affine type, we can actually determine all \hat{A} by the list of diagram automorphisms of A in [1]. And in the case of hyperbolic type GCM, all \hat{A} can be again determined, using the list of all hyperbolic type GCMs in [3] (see [4] for details).
- 2.4. The complete reducibility. For integrable highest weight modules of the derived algebra of a Kac-Moody algebra, we have the following complete reducibility with respect to its folding subalgebras.

Theorem 2.3. Let $A = (a_{ij})_{i,j=1}^n$ be an indecomposable, symmetrizable GCM, $A \in (\sum_{i=1}^n C\alpha_i^\vee)^*$ a dominant integral weight, and L(A) an integrable highest weight module with highest weight A over the derived Kac-Moody algebra [g(A), g(A)]. Assume that \hat{A} is again a GCM. Then, as \hat{g} -modules,

L(A) is isomorphic to a direct sum of $[g(\hat{A}), g(\hat{A})]$ -modules $L(\lambda)$ such that $\lambda \in (\sum_{i=1}^m C \hat{\alpha}_i^{\vee})^*, \langle \lambda, \hat{\alpha}_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ $(1 \leq i \leq m)$, under the identification $\hat{g} \cong [g(\hat{A}), g(\hat{A})]$.

Acknowledgements. I would like to thank Professor Takeshi Hirai for his valuable suggestions. I would also like to thank Professor Jun Morita for his encouragement.

References

- [1] J. Bausch et G. Rousseau: Algèbres de Kac-Moody Affines (Automorphismes et Formes Réelles). Institut Elie Cartan (Université de Nancy 1), Paris (1989).
- [2] V. G. Kac: Infinite Dimensional Lie Algebras. 3rd ed., Cambridge University Press, Cambridge (1990).
- [3] Z. Kobayashi and J. Morita: Automorphisms of certain root lattices. Tsukuba J. Math., 7, 323-336 (1983).
- [4] S. Naito: Subalgebras of Kac-Moody Lie algebras and highest weight representations. Master Thesis, Kyoto University (1990) (in Japanese).
- [5] —: On regular subalgebras of a symmetrizable Kac-Moody algebra. Proc. Japan Acad., 67A, 117-121 (1991).
- [6] —: On regular subalgebras of Kac-Moody algebras and their associated invariant forms. Symmetrizable Case (to appear in J. Math. Soc. Japan).