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81. Remarks on Viscosity Solutions for Evolution Equations

By Yun-Gang CHEN,* Yoshikazu GIGA,**) and
Shun’ichi GoTo***)

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1991)

1. Introduction. We congider a degenerate parabolic equation
(1) oujfot+F(t, x, u, Fu, F*u)=0,
where I stands for the spatial derivatives. We are concerned with a
viseosity subsolution which needs not to be continuous. We say a function
u(t, ) defined in a parabolic neighborhood of (¢, x,) is left accessible at
(t,, x,) if there are sequences x,—x,, t,—t, with ¢,<<t, such that lim,__ u(¢,;, z,)
=u(ty, ;). Our goal is to show that a viscosity subsolution is left accessible
at each (parabolic) interior point of the domain of definition for a wide
clags of F'. We also clarify the relation between viscocity subsolutions
defined on time interval (0, T) and those on (0, 7]. Similar problems are
studied in other contexts by Crandall and Newcomb [3] and by Ishii [7].
We thank Professor Hitoshi Ishii for pointing out these references.

There are technical errors in the proof of Ishii’s lemma up to the
terminal time in our previous work [1, Lemma 3.1 and Proposition 3.2].
If we note left accessibility, the proof can be easily fixed. We take this
opportunity to correct technical errors in [1] somewhat related to left ac-
cessibility. We thank Professor Joseph Fu for pointing out a couple of
errors in the proof of [1, Lemma 3.1 and Proposition 3.2].

For h: L-R (LCR? we associate its lower (upper) semicontinuous
relaxation hy(h*) : L—»R=RU{+ o} defined by

h*(z):——ligl inf{h(y); |2—y|<e,ye L}, zeL

and h*(z)=—(—h).(2). Let 2 be an open set in R*. For T>0 let W be a
dense subset of A=(0,TI X 2XRXR"xS", where S denotes the space of
nXn real symmetric matrices. Suppose that F=F(t, 2, r,p, X) is a real
valued function defined in W. Since W is dense in A, F* and F, : A>R
are well-defined. Any function u : Q—R (resp. @,—R) is called a viscosity
subsolution of (1) in Q=(0, T1 X 2 (resp. Q,=(0, T)x ) if u*<co on @ and
if, whenever +» € CAQ) (resp. C¥(Q,)), (t,x) € Q (resp. Q,) and (u* — ) (¢, x)=
maxy(u* —) (resp. maxy,(u*—+)) it holds that

(2) Vot 1)+ F (&, @, u*(t, x), Vi (¢, x), P (8, 2)) <0,

where +,=dy/dt. We shall suppress the word viscocity. One can easily
observe that « is a subsolution of (1) in Q (resp. @, if and only if « is a
subsolution of (1) in (0, T1x U(x) (resp. (0, T)x U(x)) for all x € 2, where
U(x) is an open ball centered at x in Q.
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2. Accessibility theorem. Let k be a positive integer. Let T>0
and Yy, € R* (1<i<k) and let 2, be an open set in R™ with Y, € 2,. Let
A=A, be as above with =80, and W, be a dense subset of A,. Suppose
that F=F, : W,—R satisfies
(3) F.(t,z,7,p,X)>—00 for p+0,7rcR, Xe8"

F.(t,2,7,0,0)>—0c0 for reR
with n=n, and t=T for all x near y,, 1L <i<k). Let u, be a subsolution of
1) with F=F, on Q,=(0,T1x2,. Then the function w(t,z)=> %, uf,z,)
18 left accessible at (T, y,), where z=(2,, - - -, %), 2, € 2, and Yo=Yo1, - * *» You)+

Example. The agsumption (3) cannot be dropped even for k=1. In-
deed, we observe that (¢, x)=0 for ¢t<T and =1 for ¢t=1T is a subsolution
of (1) with FF=F(p, X)= — (trace X)/|p| in (0, T] X R", since F,(0, 0)= — o
and F' is degenerate elliptic, i.e. F(p, X)<F(p,Y) if X>Y for usual order-
ing of S$*. Clearly u is not left accessible at (7, y,) for any y, € R".

3. Lemma. Let @(s,2)< 400 be an upper semicontinuous (u.s.c)
function on Z=_(c, T1*x D, where D is a bounded open set in RY and t<T.
For 6>0 let (t;, z;) be a maximizer of

(4) 0u(s, ) =0(s, )= 3, (i35, s=(s1, ---,8,)

over Z. Suppose that o(t,2)=0(t, - - -, t,2) attains its strict maximum over
[z, TIX D at (T, 2,), z,€ D. Then each i-th component t; of t; converges to
T and z, converges to z, as 6—0, where 1<i<k. Moreover

(5) lim @,(t;, z5)=lir§1 D(ts, za)=90(T, 2o

80 8-
Proof. Since @, is maximized at (¢;, z;), we see

k
Oty 20— 2, b=t (020(T, -+, T, ) =9(T, 20).

This implies that 3%, (t,—t;)*/6 has an upper bound sup; @ —¢(7, z,) inde-
pendent of 6. In particular ¢,—t;—0 as 6—0 for 2<i<k.

Suppose that t,,—t; and z,—2’ by taking a subsequence §=4,—0. Since
tu—1t,—0, we see t/=t] for 2<i<k. From @,<@ it follows that
(6) QD(T’ 20)=04T, - - -, T, 2) <Dyt 2) < D(ts, 25)-
Letting 6,—0 yields o(T, 2)<¢(t{,2') since @ is u.s.c. This implies ;=T
and 2z’ =z, since (T, 2,) is the strict maximizer of ¢(¢,2). The inequality (6)
now yields (5) since @ is u.s.c. The proof is now complete by the compact-
ness of Z.

4. Proof of the accessibility theorem. We set

k
W(s,2)=W(s,, - - -,sk,z)=§__“i u¥(s;, 2, 8=(8,, -+, 80

so that W(t, ---,t,2)=w(t,2). Suppose that the conclusion were false.
Then there would exist an open ball D, in 2, centered at y,, and ¢>0 such
that

a:=w(T,yo)—-sgp w(t,z)>0

with U=(T—¢, T)X D, D=D, X D,X --- X D,. We may assme that (3) holds
for F, at t=T for all z ¢ D, by taking D, smaller. We shall fix ¢ and D
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and take K large so that w(T,2)— >t , K|z,—v,,|' attains a maximum M at
2=z,¢€ D over D. The function

k
w(T, z)—; P,(z,) with Pi(zi)zKlzi—in I*+]2,— 20l

now attains a strict maximum M at z,=(z,,, - - -, 2,.) over D. We shall fix K.

We next introduce a function of ¢ whose derivative at t=T is very
large. Let ge C*(— o0, 0] satisfy 0<p<1 and g(0)=p(0)=1. For L>1 we
set .()=ap(L(t—T))/2. We now define @ by

(s, 2)=W(s,2)—8(s,2) with 5(s, 2)=i P(2)+B(s).

By the choice of g, the function ¢(t, 2)=9(%, - - -, t, 2) would attain its strict
maximum M —a/2 at (T, z,) over U. Let @, be as in (4), i.e.

Oi(s, )=W(s,2)—5i(s,2) with s, )=, )+ (5:—8)/o.

By Lemma 3 a maximizer (¢,, z;) of @, over [T —e, T1*x D would converge to
(T, ...,T,z) as 6—0.

Since u, is a subsolution of (1) in Q;=(T—¢, T) X D, and since

U, B)— (s - s bosots by borns + > by Bors +* 7 Boio1s &, Ragans = * * s Zow)
attaing its maximum at (¢,,, 2;,) over @, (as a function of (¢, x)), the inequality
(2) yields
(7)) b,)+1:(0<0 with [i(®)=F(ts, 2si, uF(tsis 25), VP (25), VP(25,)).
Here, b1(5)=(,@L)t(t51)+2 Z’;Cez (tal_tw)/a and bz(5)= —z(tﬂ“‘tat)/a for 2<i< k.
Adding (7,) from i=1 to k yields

k
(‘BL)t(tﬁl)"";lf—L(a)SO.
Since t;,—T1 and z;,—z,, letting §—0 would yield
k
(8) La/2+§1 F, (T, 2o, u¥(T, 20,), VP, (20,), V*P (2, )) £ 0

provided that
(9) Lim wf (s, 2) =uF (T, 2,) (AZIZE).
d—0

Since V'P,(z,;)=0 implies V*P,(z,,))=0 and since z, is independent of L, the
inequality (8) contradicts (8) for large L. Thus w is left accessible at (7', ¥,).

It remains to prove (9). Since u¥ is u.s.c. and £ is continuous, (5)
yields (9).

5. Comparison theorem up to terminal time. Suppose that F=
F@,r,p,X) is continuous and degenerate elliptic on J,=(0, TT X R X (R™\{0})
X 8*. For each M>0 there is a constant ¢c,=c,(n, T, M) such that r—F
&, r,p, X)+c,r is nondecreasing for all (¢, r,p, X) € J, with |r|<M. Suppose
that —oo<F,(t,r,0,0)=F*(t,r,0,0)<oo. Let u and v be respectively,
sub- and supersolutions of (1) in Q with bounded Q. If u*<wv, on the
parabolic boundary 9,Q={0} X 2U[0, T1X a9, then u*<v, on Q.

This is proved in [1, Theorem 4.1] by extending Ishii’s lemma ([8,
Proposition IV. 1], [1, Proposition 3.1]) up to t=T [1, Lemma 3.1]. It turns
out that u* <v, for ¢<T can be proved just by using original Ishii’s lemma
[1, Proposition 3.2] if we modify [1, Lemma 4.3]. To get u*<wv, up to
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t=T we need to apply the Accessibility theorem. We just indicate how to
alter the proofs of [1, Lemma 4.3 and Theorem 4.1].
In the statement of [1, Lemma 4.3] we should replace - by
Volts 2, Y =d(@—y)+a/(T—1)
for arbitrary fixed «>0. One can carry out the proof of Case 1 with ., by
using [1, Proposition 8.2] since <7 and 0dv,/dt>0. In Case 2 we should
replace V and @, by
‘p(t» X, 2/)=\lfa(t7 X, y)+(i"‘ t)zy
o, x, P=wt,z,P—¢@—y—n—CE—1t)—a/(T—1)
respectively. The Case 2a should be
‘For some x>0 there is (¢,, 2,, ¥,) € @ with x,—y,=7 such that
Q,(t,, 2, Y,)=8up{®,t, x,y); 2,y e, |x—y|<k, te(0,T]}
for all » € R* with |5|<#.
In the proof for Case 2a we replace f by
S =sup{w(t, z,y)—(F—t)—a/(T—t);z,ye 2, x—y=n}h
We argue in the same way as in the original proof and obtain
sup{w(t, z, y)—E—tV—a/(T—t); |x—y|<r te O, T =w,z, ) —a/(T—1)
in place of (4.9). Since t<T, we apply [1, Proposition 3.2] to complete the
proof for Case 2a.. Again we should note dv,/dt>0 to get (4.12b). The
remaining Case 2b can be treated parallely if we replace Q; by Q,. We
note that the maximum of @, is not attained at ¢=£¢ (<T) because of the
term (—t)*in . We thus observe that [1, Lemma 4.3] with y, holds for
all «>0.

In the proof of [1, Theorem 4.1] one should replace v by +,. (All ¢ after
the definition of w*® were misprints of 4 so it should also be replaced by +,.)
We argue in the same way as in the original proof with + replaced by 4,
and end up with w*<+, or

u(t, ©)—v(E, Y <a(x—y[+8)"+b,+a/(T—1t) on Q.
Sending §—0, a—0 and taking infimum for 1€ A we obtain
10) u(t, x)—vt, <m(z—y) for t<T,x,yecl,
where m is some modulus.

Since u and —v are subsolutions of (1) with some F satisfying (3) on
Q, the Accessibility theorem with k=2 implies that u(¢, x)—v(t,y) is left
accessible at (T, z,y), ¢,y € 2. We now conclude that (10) holds up to t=T
which yields u*<v, on Q.

Remark. In [5] the comparison theorem is extended to more general
equations on arbitrary domains and the proof is simplified. However,
since [5, Proposition 2.4] actually needs ¢<T in the definition of «, the
comparison [5, (2.2) and (4.2)] holds only for ¢<T from the proof given
there. Fortunately one applies the Accessibility theorem to get [5, (2.2)
and (4.2)] up to t=T so main results in [5] are correct as stated.

6. Ishii’s lemma. We note that the conclusion of [1, Lemma 3.1] is
correct if we assume that F and —G (¢, x, —r, —p, —X) satisfy (8) at ¢=T
for all z e 2. Indeed, we may assume that U, is bounded and that
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(11) O, x, ) =u(t,x)—v(t, y)—¢(, x,y)
attains its strict maximum over U, asin [1, p. 763]. For «>0 we introduce
?0,=0—¢, with ¢,=¢+a/(T—t) which is different from that in [1, p. 763].
Let (¢, x,,y,) be a maximizer of @, on U, so that t,<T. Suppose that
t.—t, z,—2, y,—y by taking a subsequence a=a;—0. For t<T we
observe

o1, , Y=Um ., @, y)<lim inf O (¢, Zo, y)<lim inf @ (t,, ., ¥.)

a—0

<lim sup @(t,, %, YISO, @', y)<O(T, 2, %)

a—0
since @, <@ and @ is u.s.c. Since u(t, x)—v(t,y) is left accessible at (T, z, %),
this implies

(12) lim dj(tw Las ya)ZQ(T, T, y)’ ¥ =1, y'=?7-
a—0
Since # and —v are u.s.c., (12) yields
(13) lim u(t,, 2)=u(T,7), limw(t,, y)=ov(T,?).
a—0 a—0

We apply Ishii’s lemma [1, Proposition 8.2] at (¢,, 2., %.) and send «a—0 to
get the desired result [1, (3.4a) and (3.4b)] since d¢,/dt >0d¢/dt.

The proof given in [1, p. 763] seems to be wrong because there may
not exist the barrier m and the convergence in [1, p. 764, line 3] is not
clear. However, as shown above [1, Lemma 3.1] is correct with extra as-
sumptions of type (3) which causes no problem for the application in [1,
Lemma 4.3].

By the way the proof of [1, Proposition 3.2] contains a minor technical
error which can be easily fixed. In [1, p. 762, line 9-3 from below], the
property that F(t,x,r,p,X) and G(t,z,r,p, X) are non increasing in r is
used although it is not assumed in [1, Proposition 3.2]. This extra assump-
tion is unnecessary because
14 lim u*(t;, z)=u(t, ®), limo(E,y)=vE7Y)

o ovoo

with ¢;=ty, x,=u}, ---, where {¢;}, {k;} are taken as in [1, p. 762, line 8].

We may assume t,—1, ,—%, y,—~¥. As in the proof of (5), one can prove
@(i’ z, ?7)=hm @5_/, kj(tj’ Ly yj)

e
with @, (¢, 2, y)=0(t, x, y)—l;t—p;-x+q; -y since u<u® and v>v,. This
yields (14) since # and —v are u.s.c. We thus conclude that [1, Proposition
3.2] is correct as it stated.

7. Extension theorem. Suppose that u is a subsolution of (1) in Q,.
Then u* is a subsolution of (1) in Q.

The statement in [1, Lemma 5.7] is incorrect and should be replaced by
this theorem. When u is continuous in Q this is proved in [9].

Proof. We may assume that Q is bounded and that u*—+ attains its
strict maximum at (7, 2,) over @ with € C¥Q). Let (¢,, z,) be a maximizer
of u*—+r, with ,=v+a/(T—t) for «>0 so that ¢t,<T. Since u* is left
accessible at (T, z,) we observe t,—T, x,—x, and u*(T, x,)=lim,_, u*(¢,, x,)
(cf. (12), (13)). Letting a—0 in (2) with =4, t=t, and x=2x, we get (2)
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with « at (T, x,) since ov,/0t > ov/ot.

8. Localization lemma. (i) Suppose that u is a subsolution of (1) in
Q. Then for T'<T, u is a subsolution of (1) in @ =0, T'1x Q. (ii) Suppose
that v is a subsolution of (1) in Q. Then v is a subsolution of (1) in (0,T)
X Q for T'<T.

Proof. We may assume that 2 is bounded. Suppose that u*—n
attaing its strict maximum at (¢, x,) over @ for ¢ C¥(Q’). Extend + to
€ CHQ) and set y;=++ g(t)/6 with §>0 where g=0 for t<t, and g=(t—t,)’
for t>t,, so that g € C*(R). Let (t;, x,) be a maximizer of u* —+, over @, so
that ¢,>¢,. Then
(15) (U*—1lf) (o, xo)-‘—‘(u*—l[fa) (o, o) < (U* — ) (E5, ) < (U* — ) (&5, 25)

or gt)/6+W* —) (s, ) <(u* — ) (s, ).
This implies that g(¢,)/6 is bounded as §—0. Since ¢,>>t, we now observe
t;—t,. Since u* is u.s.c. and ¢,—t,, sending 6—0 in (15) yields x,—x,. This
argument also yields lim,,, u*(t;, ) =u*(%,, ,). Sending § to zero in (2)
with =+, at (&, x,) yields (2) with + at (¢, z,) since ov,/0t > /dt. This
completes the proof of (i). The part (ii) can be proved easily.

The Accessibility theorem and the Localization lemma yield :

9. Corollary.. Suppose that u is a subsolution of (1) in Q. If F
satisfies (3) for (t,x) € Q, then u* is left accessible at each (t,x) € Q.

10. Miscellaneous remarks. We note that [1, Theorem 5.6] can be
proved without using [1, Lemma 5.7] and sup convolutions. A direct proof
is found in [2]. We also note that one can correct the proof of [1, Theorem
5.6] given in [1] if we use Theorems 2 and 7; we need to assume 3) at t=T
for all x € 2 in [1, Theorem 5.6].

By the way the equation [1, (1.6) or (5.14)] does not follow from [6].
The correct one is found in [4]. In [2] we actually need to assume a uniform
bound of the gradient of T in (1.6) and that of » in (2.13) to apply com-
parison results in [5].
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