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Introduction. In this paper we construct a model for the random
motion of M molecules mutually reflecting in R and investigate its limiting
behavior as the size R of the molecules tends to 0. We assume that the
k-th molecule consists of n (_1) atoms. The atoms move randomly in the
way as described below (see (0.3)) under the following restrictions (0.1)
and (0.2).
(0.1) Any two atoms in different molecules reflect each other when the

distance between them equals a given constant p (0).
(0.2) The distance between any two atoms in the same molecule does not

exceed a given constant R (0).
Let A {1 N}, N ,= n and A {Ek-1 k-1

"’’, i=1 n + 1, ,i--1 n +2, ., .1 hi},
k=l, ..., M, where the convention =1 0 is used. A describes the set of
indexes of atoms in the k-th molecule. For each i e A, we put m(i)=k if
i e Ak. Denote by X(t) the position of the i-th atom at time t and put R(t)
=max:()=(, ]X(t)-X(t)[, p(t)=min:()(, IX(t)--X(t)]. We assume
that the random motion of the atoms is described by the stochastic differen-
tial equation (SDE)
(0.3) dX(t) dB(t)+ dL(t), i= 1, 2, ..., N,
where B(t), I<i<N, are independent d-dimensional Brownian motions
and each L(t) is a process of bounded variation which can vary only when
either p(t)=p or R(t)=R and represents effects of (0.1)and (0.2) so that
p(t)>_p, R(t)gR, t>O, I<i<N. It is assumed that p(t)>p, R(t)<_R,
t_>0, I<i<N. Similar random motions were considered in [3] and [4];
however, in [3] the restriction (0.2) was not considered and in [4] n= 1 for
all k.

To solve (0.3) we consider the following problem. For given w=(wl,
w2, ..., wN) e C([0, c)-+RN) satisfying

Iw(O)--w(O)]gR for all i," with m(i)=m(),
>p for all i,] with m(i):/:m(),

we want to find (t) satisfying the equation

(0.) f(t)=w(t)+ . (f()-f())dg() i=1,, ...,N,

under the following conditions (i) and (ii)"
(i) =(,, ..., ’) e 6’([0, c)--R) with
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[(t)--.(t)l_R for all i,] with m(i)=m(]),
_p orall i, 2" with m(i)=/=m(j), t_O,

(ii) l is a continuous unction which is nonincreasing or nondecreas-
ing according as m(i)=m(]) or m(i)m(])’, moreover " l", l(0) 0 and

1,_,(s)dl(s), i m(i): re(i),
5(t)

where 1 denotes the indicator function of a set A.
If we have a unique solution (t)=(t,w,’ ..., w) of (0.4) for each

given =(w,...,w), we obtain a stochastic process X(t)=(X(t),...,
X(t)) where X,(t)=(t, W, ..., W), W, being defined by W,(t)=X(O)+
B,(t), ligN. Then the process X(t) satisfies the SDE (0.3) and is what
we call the random motion of M molecules mutually reflecting in R. We
show that the equation (0.4) can be solved uniquely employing the idea in
[4]. That is, we prove tha the domain

2n {x= (x, x, ..., x) R" Ix, x[R for Vi, j with re(i) re(j)
and p or Vi, j with m(i)m(j)}

satisfies Conditions (A) and (B) in 1 which assure the existence of the
unique solution of the Skorohod problem (w 2,) and then we derive the
equation (0.4) from the Skorohod equation or (w ;2,). We also show that
the unique solution " of (0.4) converges to some limit 0 as R 0. In the
limit motion 0 all the atoms belonging to the i-th molecule perform the
same motion which is denoted by . Then 0=(,...,) may be regarded
as describing the random motion o mutually reflecting M hard balls of
diameter p with different masses.

In 1 we firs state the results on Skorohod problem or general do-
mains ollowing [1] and then, the solvability o the equation (0.4). The
convergence of " is stated in 2 and the characterization of the limiting
unction is given in 3. Details of the proofs and some related results
will appear elsewhere.

1. Skorohod problem and the solvability o (0.4). Let D be a do-
main in R and we call R" an inward unit normal vector at x D if
[,l=l and B(x--r,, r)D=0 for some r0, where B(y,r)={z R y--z[
r}. We denote the set of inward unit normal vectors at x D by =(D) and set .,(D)={n’ [,I=1, B(x-r,, r) D=0}, r>0. We in-
troduce the ollowing two conditions on D.

Condition (A). There exists a positive constant r such that
=,,0 for all x e D.

Condition (B). There exist constants 0 and fl e [1, ) with the fol-
lowing property; for any x e 3D there exists a unit vector e such that

(e, } 1/fl for all e ,
yB(x,) OD

where (.,. } is the usual inner product in R.
Following Lions and Sznitman [1] and Saisho [2] we consider the ol-
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lowing Skorohod problem.
Skorohod problem (w D). Given w e C([0, c)-R) with w(0) e D, find

a pair (, l) of functions satisfying the equation

(1.1) (t)--w(t)q-: (s)dl(s)

under the conditions"
( ) e C([0, c)D),
(ii) is a continuous nondecreasing function with l(O)--O and l(t)=;: l((s))dl(s),
(iii) (s) e (,) if (s) e 3D.

When we refer to the Skorohod problem (w;D) or the Skorohod equation
(1.1) for (w;D), we always consider (1.1) under these conditions (i), (ii)
and (iii). The ollowing theorem is known.

Theorem 1.1 ([2]). If D satisfies Conditions (A) and (B), for any
w e C([0, o)-+Rn) with w(O) e D, the Skorohod problem (w; D) can be
solved uniquely.

We now proceed to the special case where D--),.
Proposition 1.1. If ORp/4, then the domain satisfies Condi-

tions (A) and (B) with r-r={/N(18M--15)p}-R and
7,(..q))={n" [nl=l, n= ] e,.n.(x), c,.>_O},

(i,j)Yx

where J={(i,])" l<_i<]<_N, Ix--xl=R or =p} and

0 0 -_ 0 0 /-1 0 " 0 if m(i) m(i)

,(0’"" 0,,x’4_p-,0,...,0,--x x4_p--x,0,...,0),, i m(i)=m(]),

By virtue of Proposition 1.1 we can make use of Theorem 1.1 to obtain
the existence of a unique solution of the Skorohod problem (w; ), More-
over, we can prove that the equation (0.4) is equivalent to the Skorohod
equation for (w .) and consequently obtain the following theorem.

Theorem 1.2. For each ORp/4, the equation (0.4) has a unique
solution.

We now put
.q)= {x=(x, x, ..., x) e R lx--xl>p, m(i):/:m(])},
5={x=(x, xz, ..., x) e R’"

We remark here the following for the later use.
Remark 1.1. (1)([3]) 2 satisfies Conditions (A) and (B) with r--_--

r p{8(N-- 1)n}- and

(t, j) eJF
where J--((i, ])" l_i<]_N, Ix--xjl--p, m(i)=m(])}.

(2)([3], [4]) ) satisfies Conditions (A) and (B) with r--p{8(M--1)/} -and
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((C))={" I1--1, -- cm(x), c_0}, xe 3,

where --J--{(k, h) lk<hM, lx-x=p} and

( x-x 0 0 x-x o o)o,...,o, ’"’ ’""
(-gh) (--h)

Z. Convergence of as R tends to 0. Let (t)=w(t)+[.
be he Skorohod equation for (w;). Then by Proposition 1.1, we can
write
(2.1)
where

"(t) w(t) + "(t) + e’(t).

lKi<jKN lgi<jKN
re(i) =re(j) m(i) Cm(j)

Remark 2.1. (2.1) is the Skorohod equation for (w+; _q)), that is,
we can write (2.1) in the form"

(t)=w(t)+(t)+ ()dl(), () e e(() if ()

Nor any e R we define e=(e, e,..., e)e R by e= if m(i)=,
and for f’ [0, )R we define f" [0, )R by f(t)=f(t), t e [0, ).
Next, for x e R we define G(x)e R by (G(x))= x/n, k=l, 2,...,
M, and denote ’=G(’), O’=G(’), =G(w) and =. Clearly, " de-
scribes the motion of the center of gravity of each molecule. Furthermore,
we use the following notation; for a continuous function u defined on
[0, ), we set

A.,(u)=sup {lu(t)-u(t)] st,<tt},
Ilull,=sup (lu(s)]"
lull=the total variation of u on [0, t],
lul =lul -Iul., O s t.

Then we note that (2.1) implies (t)=(t)+(t) and t)=(t)+(t).
Seing (t)= ()gl(), we can rove he following roosiion.

Proposition Z.1. Let T>0 be ite time. Then
mall R>0, there eit oitive eotat K K ueh that

where K, K geen.g o o O, T, ad the mod o
tiit o .

Pot he roof we employ an argumen similar o that in
Proposition 8.1 o [2].

Remark Z.Z. Pot suNeiently small R>0, Proposition 2.1 implies
tha Ip, I are uniformly bounded in R for any finite t>0.

Lemma Z.1. Soe that ad ’ ove the Soohod eqatio
(t)=w(t)+(t)+p(t) ’(t)=w(t)+’(t)+’(t), o (w+ ;),
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(2.2) I-(t)---(t)]-- 2-
r

Using Proposition 2.1, Lemma 2.1 and Gronwall’s lemma we get the
following theorem.

Theorem 2.1. " converges uniformly on each finite t-interval as
R$O.

The ollowing theorem is immediate from Theorem 2.1 and the fact

(t)-(t)R, 1
Theorem 2.2. coverges uniformly on each finite t-interval as R O.. Characterization of the limiting function. By Theorem 2.1, we

have0 and0 uniformly in t e [0, T] as R $ 0 for some limiting

functions 0 and , respectively for any finite T0. Here we remark that

= or all i, ] with m(i)=m(]) and if we define 0=(,,...,)e R
by = for i with m(i)=k, k=l,2,...,M, we have 0=0. Using the
method of [2" Theorem 4.1] we can show

(1) d6(s)=(s)d], (s) e ()() if (s) e,
rom which the following theorem is obtained.

Theorem .1. o solves the Skorohod problem (;), that is, (t)
(t)+(t) is a Skorohod equation.
Remark .1. We can also prove that (s) in (1) is written in the form"

N

(s)= c(s)((s)-(s)), c(s)0, i=1 2 N.
j=l
()

Thus, we can write

j=l
(

Setting/(t)= e()dl"l and hen lg(t)=l(t) for =m(i), h=m(),

we easily have the following theorem.
Theorem 3.Z. {(t)} i iqe oltio o

(a.1) g(t)=#(t)+l (g()-())glg(), =1,, ...,M,
()

with the eogitio that
( ) 0=(, , ..., ) e C([0,))ad g(t)-(t)120 iI h,

) lg i eotio odeereaig etio with lg=l,/g(0)=0,
and

l(t) to l,2() o() ,-_, (s)dl(s).

In particular, if nl=n2 n, {](t)} solves the Skorohod problem
(; )).
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