55. Tuboids of Cⁿ with Cone Property and Domains of Holomorphy

By Giuseppe Zampieri

Dipartimento di Matematica, Universita di Padova via Belzoni 7, 35131 Padova, Italy (Communicated by Shokichi IYANAGA, M. J. A., June 11, 1991)

Abstract: Let X be a C^{∞} -manifold, M a closed submanifold, Ω an open set of M. We introduce in § 1 a class of domains U of X called Ω -tuboids. They coincide with the original ones by [2] apart from an additional assumption, of cone type, at $\partial\Omega$. In § 2 we take a complex of sheaves $\mathcal F$ on X and denote by $\mu_{\mathcal G}(\mathcal F)$ the microlocalization of $\mathcal F$ along Ω . We take a closed convex proper cone λ of T_M^*X and describe the stalk of $R\pi_*R\Gamma_{\lambda}\mu_{\mathcal G}(\mathcal F)_{T_M^*X}$ by means of cohomology groups of $\mathcal F$ over Ω -tuboids U with profile $\gamma=\mathrm{int}\,\lambda^{oa}$. In § 3 we take $X=C^n$, $M=R^n$, Ω open convex in M and prove that in the class of Ω -tuboids with a prescribed profile there is a fundamental system of domains of holomorphy. By this tool we prove in § 4 a decomposition theorem for the microsupport at the boundary $SS_{\mathcal G}$ by Schapira [9] (cf. also [5]).

§ 1. Let X be a C^{∞} manifold, M a closed submanifold, let $\tau \colon TX \to X$ (resp $\pi \colon T^*X \to X$) be the tangent (resp cotangent) bundle to X, and let $\tau \colon T_MX \to M$ (resp $\pi \colon T_M^*X \to M$) be the normal (resp conormal) bundle to M in X. We note that we have an embedding $\iota \colon TM \longrightarrow M \times_X TX$ and a projection $\sigma \colon M \times_X TX \to T_MX$. For a subset A of X (resp of M) we shall define the strict normal cone of A in X (resp M) by $N^X(A) = TX \setminus C(X \setminus A, A)$ (resp $N^M(A) = TM \setminus C(M \setminus A, A)$) where $C(\cdot, \cdot)$ is the closed cone of TX defined in [6]. If no confusion may arise, we shall omit the superscripts X and X. Let X be an open set of X and X a point of X. We shall assume X and X be an open set of X and X a point of X. We shall assume X X and X be an open set of X and X and X be shall assume X and X be an open set of X and X be an open set of X and X be shall assume X and X be an open set of X and X be shall assume X and X be an open set of X and X be shall assume X and X be an open set of X and X be shall assume X and X be an open set of X and X be shall assume X and X be an open set of X and X be shall assume X and X be an open set of X and X be an open set of X and X be shall assume X and X be an open set of X and X be shall assume X and X be an open set of X and X be shall assume X and X be an open set of X and X be shall assume X and X be shall assume X and X be an open set of X and X be shall assume X and X be an open set of X and X be shall assume X and X be an open set of X and X be a shall assume X and X and X

Let γ be an open convex cone of $\overline{\Omega} \times_{M} T_{M}X$ with $\tau(\gamma) \supset \overline{\Omega}$.

Definition 1.1. A domain $U \subset X$ is said to be an Ω -tuboid with profile γ when

$$\sigma(M \times_{X} TX \setminus C(X \setminus U, \overline{\Omega})) \supset \gamma.$$

One proves that $\theta \in T_{x_0}X \setminus C_{x_0}(X \setminus U, \overline{\Omega})$ iff for a choice of local coordinates there exists a neighborhood V of x_0 and an open cone G containing θ s.t. $((\overline{\Omega} \cap V) + G) \cap V \subset U$. In particular:

$$TX \setminus C(X \setminus U, \overline{\Omega}) = (TX \setminus C(X \setminus U, \overline{\Omega})) + N(\Omega).$$

Lemma 1.2. Let (1.2) hold. Then there exists an open convex cone $\beta \subset \overline{\Omega} \times_X TX$:

$$\beta \subset TX \setminus C(X \setminus U, \overline{\Omega}), \quad \beta = \beta + N(\Omega), \quad \sigma(\beta) \supset \gamma.$$

Proof. For a choice of coordinates on X we identify (1.4) $M \times_X TX \cong TM \oplus_M T_MX \ni (t, x+\sqrt{-1}y).$

Let $\theta \in N_t(\Omega)$, $|\theta|=1$ and let $\gamma' \subset \subset \gamma$ (in the sense that $\overline{\gamma'/R^+} \subset \subset \gamma$). Owing to (1.2) we then have for suitable ε

$$(1.5) T_t X \setminus C_t(X \setminus U, \overline{\Omega}) \supset \mathbf{R}^+(\theta + (\gamma_t')_s) \ \forall t,$$

(where $(\gamma'_t)_{\varepsilon} = \{y \in \gamma'_t : |y| < \varepsilon\}$). One may find an open cone $\beta \subset TX$ with convex fibers such that $\forall t$:

$$\beta_t \subset T_t X \setminus C_t(X \setminus U, \overline{\Omega}), \quad C_{\theta}(\beta_t, \{\theta\}) \supset_{\gamma_t}.$$

In particular $\sigma(B_t) \supset \gamma_t$. If we replace β by $\beta + N(\Omega)$ we get the conclusion. Let $\gamma \subset T_M X$, $\beta \subset M \times_X TX$, $\alpha \subset TM$ be open (convex) cones with $\beta = \beta + \alpha$. Then

Lemma 1.3. We have

(1.6)
$$\sigma(\beta) \supset \gamma \Leftrightarrow \forall \gamma' \subset \subset \gamma \exists \beta' \quad open \ convex : \\ \beta' \supset \alpha \ and \ \beta \supset \beta' \cap \sigma^{-1}(\gamma').$$

Proof. In the coordinates of (1.4) and for $\theta \in N_t(\Omega)$, $|\theta|=1$, we have:

$$(1.7) \qquad \beta_{t} \supset \mathbf{R}^{+}(\theta + (\gamma_{t}')_{\varepsilon}) + \alpha_{t} \\ \supset \sigma^{-1}(\gamma_{t}') \cap \{x + \sqrt{-1}y \; ; \; x \in \alpha_{t}, \; |y| < \varepsilon' \operatorname{dist}(x, \partial \alpha_{t})\} = \sigma^{-1}(\gamma_{t}') \cap \beta_{t}'$$

Proposition 1.4. Condition (1.2) is equivalent, for a choice of coordinates $x+\sqrt{-1}y\in X\cong T_{M}X$ to:

(1.8) $U\supset \{x+\sqrt{-1}\ y\in\Omega\times_{M}\gamma': |y|<\varepsilon\delta_{x}\}\ \forall\gamma'\subset\subset\gamma\quad and\ for\ suitable\ \varepsilon\ (where\ \delta_{x}=\operatorname{dist}(x,\partial\Omega)\wedge 1).$

Proof. The proof just consists in rephrasing Lemma 1.3 with $\alpha = N(\Omega)$.

§ 2. Let X be a C^{∞} -manifold of dimension n, M a closed submanifold of X of codimension l, and let $TM \xrightarrow{\iota} M \times_{X} TX \xrightarrow{\sigma} T_{M}X$ and $T^{*}M \xleftarrow{\rho} M \times_{X} T^{*}X \xrightarrow{\overline{\omega}} T^{*}X$ be the natural mappings. We shall consider the families of open convex cones $\gamma \subset T_{M}X$ (or $\alpha \subset TM$ or $\beta \subset TX$) and closed convex proper cones $\lambda \subset T_{M}^{*}X$ (or $\nu \subset T^{*}M$ or $\mu \subset T^{*}X$). They are related by $\lambda = \gamma^{o}$ (or $\nu = \alpha^{o}$, $\mu = \beta^{o}$), where γ^{o} (α^{o} , β^{o}) denote the polar cone to γ (α , β). It is immediate to prove that:

(2.1)
$$\sigma(\beta) \supset \gamma \Leftrightarrow \mu \cap T_M^* X \subset \lambda$$
$$\overline{\beta} \supset \alpha \Leftrightarrow \mu \subset \rho^{-1}(\nu).$$

One also sees that if $\rho(\beta)$ is proper, then

(2.2)
$$\mu \operatorname{proper} \Leftrightarrow \mu \cap T_M^* X \operatorname{proper}$$

 $\operatorname{c.h.} (\mu) \cap T_M^* X = \operatorname{c.h.} (\mu \cap T_M^* X),$

where "c.h." denotes the convex hull. We denote by $D^b(X)$ the derived category of the category of complexes of sheaves with bounded cohomology. For $\mathcal{D} \in \mathrm{Ob}\,D^b(X)$ and for $\Omega \subset M$ open, we put $\mu_{\mathcal{D}}(\mathcal{D}) = \mu$ hom $(Z_{\mathcal{D}}, \mathcal{D})$ (where μ hom (\cdot, \cdot) is the bifunctor of [6, 7]) and call it the microlocalization of \mathcal{D} along Ω . Let $x_0 \in \partial \Omega$.

Theorem 2.1. Assume that $N_{x_0}^{\mathtt{M}}(\Omega) \neq \emptyset$, let λ be a closed convex proper cone of $T_{\mathtt{M}}^*X$ containing $\overline{\Omega} \times_{x} T_{x}^*X$ at x_0 . Then

(2.3)
$$\mathcal{H}_{\lambda}^{j}(\mu_{g}(\mathcal{G})_{T_{M}^{*}X})_{x_{0}} = \lim_{\overline{U,B}} H^{j-1}(U \cap B, \mathcal{G})$$

where U (resp B) ranges through the family of tuboids with profile $\gamma = \inf \lambda^{oa}$ (resp open neighborhoods of x_0).

Proof (cf. also [11]). Let us denote by μ the cones of T^*X with $\rho(\mu) \subset N^o(\Omega)$ and $\mu \cap T_M^*X \subset \lambda$; by (2.2) it is not restrictive to assume the μ 's to be proper and convex. Let $q_j: X \times X \to X$, j=1, 2 be the projections, let $s: X \times X \to X$, $(x, y) \mapsto x - y$ and let Δ be the diagonal of $X \times X$. We have:

$$(2.4) H_{\lambda}^{j}(T_{M}^{*}X, \mu_{\varrho}(\mathcal{F})_{T_{M}^{*}X}) = \underset{\mu}{\underline{\lim}} H_{\mu}^{j}(T^{*}X, \mu_{\varrho}(\mathcal{F}))$$

$$= \underset{W}{\underline{\lim}} H^{j-n} \mathbf{R} \mathcal{H}om_{\mathbf{Z}_{X}}(\mathbf{R}_{q_{1}}\mathbf{Z}_{W \cap (X \times \varrho)}, \mathcal{F}),$$

for W verifying $T_d(X\times X)\setminus C_d((X\times X)\setminus W)$ in the identification $T_d(X\times X) \underset{s'}{\Rightarrow} TX$. (cf. 6, Proposition 2.3.2] as for the latter equality.) But for a fundamental system of neighborhoods B of x_0 , we have:

$$(2.5) R_{q_1}Z_{W\cap(X\times\Omega)}|_{\beta}=Z_{q_1(W\cap(X\times\Omega))}[-\dim M]|_{\beta}.$$

If we assume (2.5) the conclusion is immediate since the sets $q_1(W\cap(X\times\Omega))$ are a fundamental system of Ω -tuboids with profile int λ^{oa} (cf. [11, Lemma 1.2 and 1.3]). Let us prove (2.5). We identify $T_xX\cong X$ and $M\times_xTX\cong T_xX\oplus T_x$ (for a choice of a projection $X\to M$). Let $F\subset\subset \mu_x^a$, $N\subset\subset N_x^M(\Omega)$ $\forall x$ close to x_0 and put G=F+N, $G_\varepsilon=G\cap\{g\in G\colon \langle g,\theta\rangle<\varepsilon\}$ where θ is a fixed vector of $N_{x_0}^M(\Omega)$. We shall prove (2.5) with W replaced by $s'^{-1}(G_\varepsilon)$. In fact set $A_x=q_1^{-1}(x)\cap s'^{-1}(G_\varepsilon)\cap (X\times\Omega)$. Let L_ε be the plane through $x_0+\varepsilon\theta$ with conormal θ and L_ε^- the half-space with exterior conormal θ and boundary L_ε . Then for suitable B and $\forall x\in B$, we see that A_x is an open connected set which verifies:

$$\begin{cases} (y+N) \cap L_{\epsilon'}^- \subset A_x & \forall y \in A_x \\ (y+N) \cap (z+N) \cap L_{\epsilon'} \neq \emptyset & \forall y, \, z \in A_x, \end{cases}$$

(for a new ϵ'). Hence A_x is contractile and $R\Gamma_{\epsilon}(A_x, Z_M) = Z[\dim M]$.

Remark 2.2. If Ω is convex in $M \cong \mathbb{R}^n$, then we get a "global" version of Theorem 2.1: $H^j_{\lambda}(T_M^*X, \mu_{\theta}(\mathcal{D})_{T_M^*X}) = \underline{\lim}_{U} H^{j-1}(U, \mathcal{D})$.

§ 3. We shall extend here the results of [2]. Let $C^n = R_x^n + \sqrt{-1} R_y^n$, let $\pi = \pi_x$ be the first projection $C^n \to R_x^n$, let $\dot{R}^n = R^n \setminus \{0\}$, and set $S^{n-1} = \dot{R}^n / R^+$. We shall call (convex) cone of C^n any subset γ of C^n with (convex) conic π -fibers. For cones γ , γ' of C^n , we write $\gamma' \subset C\gamma$ when $\bar{r} \cap (R_x^n + \sqrt{-1} S_y^{n-1})$ is compact in γ . Let Ω be an open set of R^n , and γ an open convex cone of $\bar{\Omega} \times_M T_M X$. We shall assume all through this section that Ω is convex. For $x \in \Omega$, we set $\delta_x = \text{dist}(x, \partial \Omega) \wedge 1$ and $\gamma_x = \gamma \cap \pi^{-1}(\Omega)$. We recall from § 1 that a domain U is an Ω -tuboid with profile γ , when $\forall \gamma' \subset C\gamma \exists \varepsilon$: $U \supset \{x + \sqrt{-1} y \in \gamma'_{\alpha}, |y| < \varepsilon \delta_x\}$. We shall also assume without loss of generality that $U \subset \gamma_x$ in what follows. Note that if $\pi(\gamma) \subset \Omega$, then our definition coincides with the original one by [2].

Lemma 3.1. Let $U' \subset U$ be Ω -tuboids with profiles $\gamma' \subset \subset \gamma$, and set $W' = \pi(\gamma')$, $W = \pi(\gamma)$. Assume that U' has convex fibers, that $\overline{U}' \setminus \overline{\Omega} \subset U$, and that

(3.1) For a finite open covering $\bigcup_{j} V'^{j} \supset \partial \Omega \cap W'$, for open truncated cones G'^{j} and H'^{j} with $G'^{j} \subset \subset H'^{j}$, we have

$$U'_{V''} \subset \bigcup_{x \in \mathcal{Q} \cap V''} x + \sqrt{-1} G'_{\delta_x} \subset \bigcup_{x \in \mathcal{Q} \cap V''} x + \sqrt{-1} H'_{\delta_x} \subset U.$$

Then for any γ'' with $\gamma' \subset \subset \gamma'' \subset \subset \gamma$ there exists an Ω -tuboid U'' with profile γ'' such that: U'' has convex fibers; $U' \subset U''$ and $\overline{U}'' \setminus \overline{\Omega} \subset U$; (3.1) holds for new V''^{j} , G''^{j} , H''^{j} .

Proof. Set

$$U'' = \bigcup_{x \in \Omega \cup W''} x + \sqrt{-1} \text{ c.h. } (U'_x \cup (\gamma''_x)_{\kappa \delta_x}).$$

According to [2], U'' satisfies all requirements except over a neighborhood of $\partial\Omega$. We decompose such a neighborhood as $\bigcup_j V^j$ with $V = V^j$ satisfying $V \subset \subset W$, $\gamma''_v \subset V + \sqrt{-1}F'' \subset \subset \gamma$. (Observe that here the F's (resp. G's) are cones (resp truncated cones).) We assume also (3.1) to be satisfied by the V's such that $V \cap \overline{W}' \neq \emptyset$ (and neglect the other V's). We have

$$U_{\scriptscriptstyle V}^{\prime\prime}\subset \bigcup_{\scriptscriptstyle V} x+\sqrt{-1}\,c.h.(G_{\scriptscriptstyle \delta_x}^{\prime}\cup F_{\scriptscriptstyle \delta_x}^{\prime\prime}).$$

Since $\bigcap_{\kappa} c.h.(G' \cup F'') = \overline{G}'$, then $\forall \kappa_1$ and for suitable κ and J' with $G' \subset \subset J'$ $\subset \subset H'$, we have that $\overline{c.h.(G' \cup F''_{\kappa})} \subset J' \cup F''_{\kappa_1}$. Let $F \supset \supset F''$ with $V + \sqrt{-1}F$ $\subset \Upsilon$; since U has profile Υ , then $U \supset \bigcup_{g \cap V} x + \sqrt{-1}F_{\kappa_2 \delta_x}$. Thus if we take $\kappa_1 < \kappa_2$ and set $G'' = J' \cup F''_{\kappa_1}$, $H'' = H' \cup F_{\kappa_2}$, we get

$$\overline{U_{v}^{\prime\prime}}ackslash \overline{V}\subset igcup_{g_{0}}x\!+\!\sqrt{-1}\,G_{\delta_{x}}^{\prime\prime}\subset igcup_{g_{0}}x\!+\!\sqrt{-1}\,H_{\delta_{x}}^{\prime\prime}\!\subset\! U.$$

Reasoning by induction one immediately obtains from Lemma 3.1.

Proposition 3.2. Any Ω -tuboid with profile γ contains an Ω -tuboid with the same profile γ and with convex fibers.

Let G be an open convex set of \mathbb{R}^n contained in $\{y: |y| < 1/2\}$ and with $0 \in \overline{G}$. Let $S^{n-1} = \{\eta \in \mathbb{R}^n: |\eta| = 1\}$ and define $\sigma_{\eta \sigma} = \sup_{g \in G} \langle g, -\eta \rangle$. We also write $\sigma_{\eta} = \sigma_{\eta G}$ and define $\widehat{G} = \bigcap_{\eta \in S^{n-1}} \{y: \langle y, \eta \rangle + \sigma_{\eta} - |y + \sigma_{\eta} \eta|^2 > 0\}$ (cf. [2]). Clearly

$$\widehat{G} \subset G, \text{ and } C(\widehat{G}, \{0\}) = C(G, \{0\}).$$

Let Ω be an open convex set of \mathbb{R}^n_x and γ an open convex cone of $\Omega + \sqrt{-1} \mathbb{R}^n_y$.

Theorem 3.3. Let U be an Ω -tuboid with profile γ . Then U contains an Ω -tuboid with the same profile γ which is in addition a domain of holomorphy.

Proof. It is not restrictive to assume that U has convex fibers and that $U \subset \{x+\sqrt{-1}y: x \in \Omega, |y| < \varepsilon \delta_x\}$, ε small. Let Ω be defined by $\phi(x) < 0$ for $-\phi$ being a convex function; clearly $-\phi(x)$ is equivalent to δ_x over $K \cap \Omega$ ($K \subset \mathbb{C} R^n$). We also remark that $C^n \to R$, $z \mapsto -\phi$ (Re z) is plurisubharmonic. For $a \in \Omega \cap \pi(7)$ and $\gamma \in S^{n-1}$, we write $\sigma_{\gamma a} = \sigma_{\gamma U_a}$ ($= \sup_{y \in U_a} \langle y, -\gamma \rangle$), and let $\psi_{a\gamma}(x,y) \stackrel{\text{def.}}{=} \langle y, \gamma \rangle + \sigma_{a\gamma}(\phi(x)/\phi(a)) - |y + \sigma_{a\gamma}\gamma|^2 + |x - a|^2$. We define (3.3)

 $U' = \{x + \sqrt{-1}y : x \in \Omega \cap \pi(7) \text{ and } \psi_{a\eta}(x, y) > 0 \ \forall a \in \Omega \cap \pi(7), \text{ and } \forall \eta \in S^{n-1}\}.$ Clearly $U'_x \subset \widehat{U}_x \subset U_x \forall x$. Moreover:

$$(3.4) \qquad \{x + \sqrt{-1}y : \psi_{a\eta}(x,y) > 0\} \\ \supset \Big\{ x + \sqrt{-1}y : |y| < \Big(|x - a|^2 + \Big(\sigma_{a\eta} \frac{\phi(x)}{\phi(a)} - \sigma_{a\eta}^2\Big) + \frac{1}{4} \Big)^{1/2} - \frac{1}{2} \Big\}.$$

By (3.4) one proves as in [2] that U' is an open domain. It remains to prove that it is an Ω -tuboid of profile τ . Let $W'+G'\subset \tau$. Fix $x_0\in W''\subset \tau$ W', fix $\varepsilon>0$ and define U'_1 (resp U'_2 , resp U'_3) by adding in the definition (3.3) for U' the condition $a\in W'$ and $(\phi(x_0)/\phi(a)^2)\geq \varepsilon$, (resp $a\in W'$ and $(\phi(x_0)/\phi(a))<\varepsilon$, resp $a\in W'$); hence $U'=U'_1\cup U'_2\cup U'_3$. By the second of (3.2) one gets $(U'_1)_{x_0}\supset G'_{\varepsilon\delta_{x_0}}$ for suitable κ independent of $x_0\in W''$. One also easily sees that $(U'_2)_{x_0}\supset S^{n-1}_{\varepsilon\delta_{x_0}}$, and $(U'_3)_{x_0}\supset S^{n-1}_{\varepsilon d^2}$ for $d=\mathrm{dist}\,(\partial W',\partial W'')$. The conclusion follows.

§ 4. Let M be a C^{ω} -manifold of dimension n, X a complexification of M, Ω an open C^{ω} -convex subset of M. Let \mathcal{O}_X be the sheaf of holomorphic functions on X, and $\operatorname{or}_{M/X}$ the sheaf of relative orientation of M in X. We shall deal with the complex by Schapira (see also [5]) of microfunctions at the boundary

$$(4.1) \mathcal{C}_{a|X} = \mu \text{ hom } (\mathbf{Z}_a, \mathcal{O}_X) \otimes \text{ or}_{M/X}[n].$$

Let $x \in \partial \Omega$, let λ be a closed convex proper cone of $\overline{\Omega} \times_{M} T_{M}^{*}X$ such that $\pi(\lambda)$ is a neighborhood of x in $\overline{\Omega}$ and set $\gamma = \operatorname{int} \lambda^{\circ a}$. The results of §2 and 3 give

Theorem 4.1. We have

(4.2)
$$\mathcal{H}_{\lambda}^{i}((\mathcal{C}_{g|X})_{T_{M}^{*}}X)_{x} = \begin{cases} 0 & \text{for } i \neq 0 \\ \underset{\pi}{\underline{\lim}} \Gamma(U, \mathcal{O}_{X}) & \text{for } i = 0, \end{cases}$$

where U ranges through the family of Ω -tuboids of holomorphy of X with profile γ .

We assume now that

(4.3) $(\mathcal{C}_{g|X})_{T_M^*X}$ is concentrated in degree 0

(cf. [9] and [3] for sufficient condition for (4.3) to hold). Let \mathcal{B}_M be the sheaf of hyperfunctions on M, let $\iota \colon \Omega \hookrightarrow M$ be the embedding, and let $\Gamma_{\varrho}(\mathcal{B}_M) \stackrel{\text{def.}}{=} \iota_* \iota^{-1}(\mathcal{B}_M)$. We recall that $\pi_*((\mathcal{C}_{\varrho|X})_{T_M^*X}) = \Gamma_{\varrho}(\mathcal{B}_M)$. We also recall that for $f \in \Gamma_{\varrho}(\mathcal{B}_M)$ the microsupport at the boundary $SS_{\varrho}(f)$ is the support of f identified to a section of $(\mathcal{C}_{\varrho|X})_{T_M^*X}$. We then get

Proposition 4.2. Let $f \in \Gamma_{\varrho}(\mathcal{B}_{M})_{x}$ and let λ_{j} , $j=1, \dots, s$ be a family of closed convex proper cones with $\bigcup_{j=1}^{s} \lambda_{j} \supset SS_{\varrho}(f)$ and with $\pi(\lambda_{j})$ being a neighborhood of x in $\overline{\varrho} \forall j$. Then we may find $f_{j} \in \Gamma_{\varrho}(\mathcal{B}_{M})_{x}$, $j=1, \dots, s$ such that $f = \sum_{j=1}^{s} f_{j}$ and $SS_{\varrho}(f_{j}) \subset \lambda_{j}$.

Proof. One sees that the property: $\mathcal{H}^{i}_{\lambda}((\mathcal{C}_{Q|X})_{T^{*}_{M}X})_{x}=0 \ \forall i\geq 1$, proved in Theorem 4.1, is stable under finite intersection and finite union of λ 's. (The first is trivial while the second is an easy application of the Mayer-Vietoris long exact sequence.) The conclusion follows at once.

Some decomposition theorem of the above type was already stated, in a different frame in [8].

Corollary 4.3. Let $f \in \Gamma_{\mathfrak{Q}}(\mathcal{B}_{\mathtt{M}})_x$ and let $p \in T^*_{\mathtt{M}}X$, $\pi(p) = x$. Then $p \notin SS_{\mathfrak{Q}}(f)$ if and only if f is a finite sum of boundary values of holomorphic functions $F_j \in \mathcal{O}_X(U_j)$ with the U_j 's being Ω -tuboids whose profiles γ_j verify $\gamma_j^{a} \not\ni p$.

References

- [1] A. Andreotti and H. Grauert: Théorèmes de finitude pour la cohomologie des éspaces complexes. Bull. Soc. Math. France, 90, 193-259 (1962).
- [2] J. Bros and D. Iagolnitzer: Tuboids dans C^n et généralisation d'un théorème de Cartan et Grauert. Ann. Inst. Fourier (Grenoble), 26, 49-72 (1976).
- [3] A. D'Agnolo and G. Zampieri: A propagation theorem for a class of microfunctions. Rend. Acc. Naz. Lincei, 1, 53-58 (1989).
- [4] L. Hörmander: An introduction to complex analysis in several variables. Van Nostrand, Princeton N. J. (1966).
- [5] K. Kataoka: Microlocal theory of boundary value problems. I, II. J. Fac. Sci. Univ. Tokyo Sect. IA, 27, 355-399 (1980); 28, 31-56 (1981).
- [6] M. Kashiwara and P. Schapira: Microlocal study of sheaves. Astérisque, 128 (1985).
- [7] —: Sheaves on manifolds. Springer Grundlehren der Math., 292 (1990).
- [8] J. M. Lieutenant: Microlocalization at the boundary of convex sets. J. Fac. Sci. Univ. Tokyo Sect. IA, 33, 83-130 (1986).
- [9] P. Schapira: Front d'onde analytique au bord. II. Sém. E.D.P. Ecole Polyt. Exp., XIII (1986).
- [10] M. Sato, M. Kashiwara, and T. Kawai: Hyperfunctions and pseudodifferential equations. Lect. Notes in Math., vol. 287, Springer, pp. 265-529 (1973).
- [11] P. Schapira and G. Zampieri: Microfunctions at the boundary and mild microfunctions. Publ. Res. Inst. Math. Sci. Kyoto Univ., 24 (4), 495-503 (1988).