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Abstract: Let X be a C~-manifold, M a closed submanifold, £ an open
set of M. We introduce in §1 a class of domains U of X called 2-tuboids.
They coincide with the original ones by [2] apart from an additional as-
sumption, of cone type, at 92. In §2 we take a complex of sheaves & on
X and denote by po(¥F) the microlocalization of & along 2. We take a closed
convex proper cone A of THX and describe the stalk of RryRI":po(F)rix by
means of cohomology groups of & over £2-tuboids U with profile y=int o2,
In §3 we take X=C», M=R~, 2 open convex in M and prove that in the
class of £2-tuboids with a prescribed profile there is a fundamental system
of domains of holomorphy. By this tool we prove in §4 a decomposition
theorem for the microsupport at the boundary SSg by Schapira [9] (cf. also
[5D.

§1. Let X be a C~ manifold, M a closed submanifold, let z: TX—X
(resp n: T*X—X) be the tangent (resp cotangent) bundle to X, and let
t: TyX—->M (resp n: THX—M) be the normal (resp conormal) bundle to M
in X. We note that we have an embedding ¢: TM=—>Mx ,TX and a
projectiong: M X y TX—-T,X. For a subset A of X (resp of M) we shall
define the strict normal cone of A in X (resp M) by N¥(A)=TX\C(X\4, A)
(resp N¥(A)=TM\C(M\A, A)) where C(-, -) is the closed cone of TX de-
fined in [6]. If no confusion may arise, we shall omit the superscripts X
and M. Let 2 be an open set of M and z, a point of 92. We shall assume
1) N2(@)+0. .

Let 7 be an open convex cone of 2X , T,X with z(y)D Q.

Definition 1.1. A domain UC X is said to be an 2-tuboid with profile
7 when
1.2) oM X ;TX\C(X\U, 2)>r.

One proves that e T, X\C,(X\U, 2) iff for a choice of local coordi-
nates there exists a neighborhood V of z, and an open cone G containing 6
s.t. (QNV)+GHNVCU. In particular:

TX\C(X\U, 2)=(TX\C(X\U, 2))+N(2).

Lemma 1.2. Let (1.2) hold. Then there exists an open convex cone
BCOX,TX:

1.3) BCTX\C(X\U, 2), B=B+N(Q), o(>Dr.

Proof. For a choice of coordinates on X we identify
1.4) MY, TX=TM®, T, X5t x+v—1y).
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Let 6e N,(2), |6|=1 and let y C Cy (in the sense that y/R*C Cy). Owing
to (1.2) we then have for suitable ¢
(1.5) TX\CAX\U, DOR O+()) Vt,
(where (7).={yer.:|y|<e}). One may find an open cone BCTX with
convex fibers such that vi:
g.C TLX\Ct(X\ U, @)’ Co(/sn {0})DTL-

In particular ¢(B,)Dy,. If we replace g by g+N(2) we get the conclusion.

Let ycTyX, BCM X xTX, aCTM be open (convex) cones with f=pg+a.
Then

Lemma 1.3. We have
1.6) (B Orevy CCriapg  open convex:

oo and BSE Na ().

Proof. In the coordinates of (1.4) and for 6 e N,(2), |6|=1, we have:

a.mn BOR*(O+(GD.)+a,
Do) N{e+v—1y; zea, |y|< dist (x, da)}=0"'GDN B,

Proposition 1.4. Condition (1.2) is equivalent, for a choice of coor-
dinates x++/ —1ye X=T,X to:
(1.8)  Ud{e+vV—-1ye2xyy:|y|<ed,}VYCCr and for suitable ¢
(where 6,=dist (x, 0Q2) A\1).

Proof. The proof just consists in rephrasing Lemma 1.8 with a=
N(D).

§2. Let X be a C*-manifold of dimension n, M a closed submanifold

of X of codimension I, and let TMSM ><XTX-‘-7—>TMX and T*ME M X x T*X

2 T%X be the natural mappings. We shall consider the families of open
convex cones yCT X (or aCTM or BCTX) and closed convex proper cones
ACTHX (or yCT*M or pCT*X). They are related by 1=y° (or v=0a°, p=
B9, where y° (a°, B°) denote the polar cone to y (@, f). It is immediate to
prove that:
2.1) (P DrounTiX 2
BDasuCp ().
One also sees that if p(p) is proper, then
2.2) 2 proper & u N T%X proper
ch. (WNTHEX =c.h. (pNTEX),

where “c.h.” denotes the convex hull. We denote by D?(X) the derived
category of the category of complexes of sheaves with bounded cohomology.
For 4 € Ob D*(X) and for 2C M open, we put p(F)=phom (Z,, &) (where
phom (-, -) is the bifunctor of [6,7]) and call it the microlocalization of &
along 2. Let 2,e00.

Theorem 2.1. Assume that NX(2)+0, let 2 be a closed convex proper
cone of T%X containing 2 X y T%X at x,. Then
2.3) I o D).y =Nig H' (U N B, F)

where U (resp B) ranges through the family of tuboids with profile y=
int 2°¢ (resp open neighborhoods of x,).
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Proof (cf. also [11]). Let us denote by g the cones of T*X with
o(w)CN°(2) and pNTHX C2; by (2.2) it is not restrictive to assume the u’s
to be proper and convex. Let ¢,: XX X—X, j=1, 2 be the projections, let
s: XX X—-X, (#,y)—»x—y and let 4 be the diagonal of X xX. We have:

2.4) H{(THX, po( Py, ) =lim HIT*X, pu ()

=1_iwll‘_; Hj'"Rﬂosz(Rq“ZWn(xxm, EZ’),

for W verifying T,(XXX)\C,(XXX)\W)Dint x°*, in the identification
T(XxX) = TX. (cf. 6, Proposition 2.3.2] as for the latter equality.)

But for a fundamental system of neighborhoods B of z,, we have:
2.5) Ry Zywnxxa ls=Zoowaaxay—dim M]|,.
If we assume (2.5) the conclusion is immediate since the sets ¢, (W N (X X 2))
are a fundamental system of Q-tuboids with profile int 1°¢ (cf. [11, Lemma
1.2 and 1.8]). Let us prove (2.5). We identify 7,X=X and M X, TX=
T X®TM (for a choice of a projection X—M). Let FCCpui, NCCN¥(Q)
vz close to z, and put G=F+N, G.=GN{geG: {9,6)<e} where 6 is a
fixed vector of NX(2). We shall prove (2.5) with W replaced by s~ (G,).
In fact set A,=q;' ()N (G)N(X X Q). Let L, be the plane through x,
+¢f with conormal § and L; the half-space with exterior conormal § and
boundary L.. Then for suitable B and Va e B, we see that 4, is an open
connected set which verifies:
{(y+N) NL;CA, VyeA,

W+N)NE+N)NL,#0 Vy,zeA,,

(for a new ¢). Hence A, is contractile and RI',(4,, Z,,)=Z[dim M].

Remark 2.2. If Q is convex in M= R", then we get a “global” version
of Theorem 2.1: H{(THX, uo(Prs,x) =limy, H'-4(U, D).

§3. We shall extend here the results of [2]. Let C*=R!4+—1Ry,
let r=rn, be the first projection C"—R?, let R"=R"\{0}, and set S"-'=R"/R*.
We shall call (convex) cone of C" any subset y of C" with (convex) conic
n-fibers. For cones r, y' of C*, we write y’C Cy when 7N (R:++—182-1)
is compact in y. Let £ be an open set of R*, and y an open convex
cone of 2% ,T,X. We shall assume all through this section that 9 is
convex. For ze 2, we set Bff—_f'dist (2, 02)A\1 and r,,“;:f’rﬂn"(Q). We recall
from §1 that a domain U is an £-tuboid with profile y, when vy’ C Cy 3e:
UD{x+v—1yers|y|<ed,}). We shall also assume without loss of gener-
ality that UcCy, in what follows. Note that if z(y) C 2, then our definition
coincides with the original one by [2].

Lemma 3.1. Let U'CU be Q-tuboids with profiles Y Cy, and set
W' =z(y), W=n(y). Assume that U’ has convez fibers, that U'\2C U, and
that

3.1) For a finite open covering \ J, V?'2O0Q2NW’, for open truncated
cones G and H” with G?'c CH", we have
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wC U 2+V-1G,c U x++v—-1H; CU.

zeQnv'd zeanv'y
Then for any ¢ with Y C Cy”’ C Cy there exists an Q-tuboid U’ with profile
Y such that: U” has convex fibers; U'CU"” and U"\2cCU; (3.1) holds for
new V', G, H",
Proof. Set
U'= U a+vV=Ieh (U,UGD).

xEQUW’
According to [2], U” satisfies all requirements except over a neighborhood
of 02. We decompose such a neighborhood as (_J, V’/ with V =V’ satisfying
VoW, yycV4+v/—1F"C C7. (Observe that here the F”’s (resp. G’s) are
cones (resp truncated cones).) We assume also (8.1) to be satisfied by
the V’s such that VN W’=0 (and neglect the other V’s). We have
Uyc VLﬁJﬂx+«/——_lc.h.(G;z UFy

Since N, ¢.h. (G UF")=@, then V«, and for suitable x and J/ with G ccJ’
C CH'’, we have that ¢.h.(GUF7)CJ' UF”. Let FoOF” with V4++v—1F
Cr; since U has profile 7, then UDUyny 24++—1F,,. Thus if we take
5n<rk and set G'=J' UF, H'=H'UF,,, we get

UN\Vc U z+vV—-1G)C aLn)Vx+~/~_1H;;cU.

anv o

Reasoning by induction one immediately obtains from Lemma 3.1.

Proposition 3.2. Any Q-tuboid with profile v contains an Q-tuboid
with the same profile v and with convex fibers.

Let G be an open convex set of R" contained in {y:|y|<1/2} and with
0eG. Let S*'={pe R":|p|=1} and define o,,=8up,c; {9, —7). We also
write ¢,=0,; and define G=(,cs0-:{¥: <U> 7> +0,—|y+a,pF>0} (cf. [2]).
Clearly

(8.2) GcG, and CG@G, {0)=C(G,{0}.
Let 2 be an open convex set of R?and 7 an open convex cone of 24+ —1R".

Theorem 3.3. Let U be an Q2-tuboid with profiler. Then U contains
an Q-tuboid with the same profile ¥ which is in addition a domain of holo-
morphy.

Proof. It is not restrictive to assume that U has convex fibers and
that Uc{z++—1y: xe 2, |y|<ed,}, ¢ small. Let 2 be defined by ¢(x)<0
for —¢ being a convex function; clearly —d¢(x) is equivalent to 5, over
KNR(KccR"). We also remark that C*—R, z— —¢ (Re 2) is plurisubhar-
monic. For a e 2N=(7) and 5 e 8*', we write ¢,,=0,y, (=Sup,cv, Y, —7)),
and let o, (%, Y=Y, > + 00, (@®) | $@) — |y + 00+l 2—aP. We define
(8.8)

U={z+v—1y: ze 2Nx{) and v,,(z, ¥) >0 VYa e 2N z(7), and V5 e S*-1}.
Clearly U,cU,cU,vx. Moreover:
(B.4) {2+ —1y: g, (, y) >0}

3{x+my: Iyl<(lw—al’+<aw % —o:‘;,]>+7lf)m—%}.
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By (8.4) one proves as in [2] that U’ is an open domain. It remains to
prove that it is an 2-tuboid of profile 7. Let W'+G c Cr. Fix x,e W'C C
W', fix >0 and define U] (resp U,, resp U;) by adding in the definition
(8.83) for U’ the condition ae W’ and (¢(x,)/d(@))>e, (resp a e W and
(¢(xy) [p(@))<e, resp a ¢ W'); hence U'=U;UU;UU;. By the second of (3.2)
one gets (U)),, DGy, for suitable £ independent of x, € W”. One also easily
sees that (U),,DS5;}, and (U3),, DS for d=dist (6W’,0W”). The conclu-
sion follows.

§4. Let M be a C°-manifold of dimension #, X a complexification of
M, Q an open C*-convex subset of M. Let Oy be the sheaf of holomorphic
functions on X, and or,,y the sheaf of relative orientation of M in X. We
shall deal with the complex by Schapira (see also [5]) of microfunctions at
the boundary
(4.1) Coix=p hom (Z,, O ory x[n].

Let z € 00, let 2 be a closed convex proper cone of 2x ,T%X such that z(1)
is a neighborhood of # in 2 and set r=int 2°>. The results of §2 and 3 give

Theorem 4.1. We have

. _ 0 for i+0
(4.2) A *((C“‘X)T%X)”‘{l_i[]m I(U,00  fori=0,
where U ranges through the family of 2-tuboids of holomorphy of X with
profile 1.

We assume now that
4.3) (Cox)rs,x is concentrated in degree 0
(cf. [9] and [3] for sufficient condition for (4.3) to hold). Let 3, be the
sheaf of hyperfunctions on M, let ¢: 2=—>M be the embedding, and let
(B = 04 (By). We recall that 7,(Cox)ryx)=To(By). We also recall
that for f e I')(B,) the microsupport at the boundary SS,(f) is the support
of f identified to a section of (Cyx)ryx. We then get

Proposition 4.2. Let f e I'y(By), and let 2;, =1, - - -, s be a family of
closed convex proper cones with \ )i, 2,D8S,(f) and with =(2,) being a
neighborhood of x in QVj. Then we may find f;e '(By),, j=1,---,8
such that f=25..f, and SS,(f,)C2;.

Proof. One sees that the property: J((Cox)ryx).=0 Vi>1, proved
in Theorem 4.1, is stable under finite intersection and finite union of 2’s.
(The first is trivial while the second is an easy application of the Mayer-
Vietoris long exact sequence.) The conclusion follows at once.

Some decomposition theorem of the above type was already stated, in
a different frame in [8].

Corollary 4.3. Let fe'y(B,), and let pe THX, n(p)=x. Thenpe
SS,(f) if and only if f is o finite sum of boundary values of holomorphic
functions F; e ©x(U,) with the U’s being Q2-tuboids whose profiles 1, verify
T2 D.
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