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50. L’ Estimate for Abstract Linear Parabolic Equations

By Mariko GI1GA,*’ Yoshikazu GIGA,**) and Hermann SOHR***)

(Communicated by Kunihiko KODAIRA, M. J. A., June 11, 1991)

§1. Introduction. We are interested in existence and a priori esti-
mate of solutions of parabolic equations
1.1) {d“/d”A(t)’“:f 0<t<T<oco  feL%0,T;X).

u(0)=a

in a Banach space X by using the method of pure imaginary power A(t)*.

The case that A is independent of ¢ is already investigated. In [1]
Dore and Venni proved that when A has a bounded inverse the Cauchy
problem (1.1) has a unique solution u for given fe L%0,T; X) and a=0
such that

1.2) j uw(wuqdwj: | Au(®) |rdt <C j |7 @) |dt

where C=C(T, q), provided the following conditions are satisfied :
1.3) Xisa C—cohvex Banach space equipped with the norm ||,
1.4) A% ||<Ke"! for all s € R where 0<0<x /2.

For the notion of {-convexity see [1] and the references cited there.

In [2] Sohr and Y. Giga extended this theory to the case that A need
not have a bounded inverse and they showed that (1.2) holds with C inde-
pendent of T'; see also [3] for another proof. Furthermore they applied
this a priori estimate to the Navier-Stokes equations.

The aim of this note is to extend their result to the case that A de-
pends on time t. We show the existence and a priori estimate of solutions
of (1.1) in the case A=A(t) depends on t¢; at least when the domain of
A@), D(A(@)) is independent of ¢.

Our result here is different and does not follow the solvability results
in Tanabe [4], Yagi [5, 6] because (i) our solution satisfies an L? estimate
and (ii) we assume less regularity for f and A(t)A(0)-'. On the other
hand, (1.3) and (1.4) are stronger conditions than the analyticity assump-
tion in [4, 5, 6] (see [3]).

§2. Main result. Let X be a complex {-convex Banach space and
0<T< 0. _L(X) denotes the space of bounded linear operators in X.

We consider operators A(t) defined in X for 0<t<T satisfying:

(2.1) a) For0<t<T, A(t)is a closed linear operator, the domain D(A(¢))
and the range R(A(t)) of A(t), are dense in X and the null space
N(A(®)) is zero.
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b) For 0<t<T and >0 we have (r+A®)) "' € L(X) and there are
constants M(¢£)>0 such that ||(c+A@E)!|<M@)/z for 0<t<T,
>>0; ||-|| denotes the operator norm.

¢) The pure imaginary powers A(t)!* are in _L(X) for all 0<t<T
and se€ R. There are constants K>0, 0<6<x/2 independent of
t and s such that |A@)**||<Ke’" for 0<t<T, seR.

d) The domain of A(t) does not depend on t; so we write 9D(A)
instead of 9D(A(t)). There is a positive constant C such that
|A@)z||<C||A(x)x| for 0<z<t<T and z e P(A); it follows that
(the closure of) A(®)A(r)'e L(X) for 0<z<t<T and ||A(})
CA(D)I<C.

e) The mapt, -—>A(t)A(c)"! is continuous from {(z,t): 0<c<t<T}
to _L(X) where _L(X) is equipped with the operator norm.

f) If T=oo, thenlim,. ..., A(t)A(z)-'=1I with respect to the operator
norm where I is the identity.

Before discussing existence and a priori estimate of solutions to (1.1),
we consider the appropriate space of initial values a. Let 1<q¢< oo, 0<
t<T<oo. We define
@.2) Ti={aeX: |ala=([" 14®e 10ajrdr) " <oo).

Remark. (i) We know (see [3]) from the assumption (2.1) that each
—A(t) generates an analytic bounded semigroup {¢~"4® : >0} with ||e-"4® ||
<C, ||[A*@)e"49||<C[z* («>0). Using this estimates we can show that
DANRAR)CST? for 0<t<T. We know also that D(4A)N R(A(t)) is
dense in X.

(ii) 9¢is a normed space but not a Banach space in general; it be-
comes a Banach space when we add ||a| on the right in (2.2). However,
we can extend the theory given here to more general initial values by
using the completion of ¢ under the norm above.

We state the main theorem. We denote #=du/dt; L0, T; X) is the

space of all measurable f : [0, T1—X With ||/ e, .z = ( f OT nf||«dt)”"< 0.

Theorem. Let X be a complex {-convexr Banach space and let 1<q
<o, 0<KT< 0. Suppose feL¥0,T; X)and acd?. Then under the as-
sumption (2.1) a)-f), there exists a unique measurable function w: [0, T)—
X with the following properties.

) j:||unqd¢<oo, u(e) € D(A) for a.e. zel0, T)and J:||A(f)u(f)||qdf<oo,
i) W)+ A@uE) = £() and w©0)=a for a.e. ze0,T),
i) [ alrde+ [ 1A@u@Ide<Clialg+ [ 17@lde]
where C 1is independent of a and f. In particular, if T =co, we obtain
[ niieas+ [ 1A@u@Irde<Clalgs+ [ F@lrde

§3. Proof of the theorem. We introduce the function space:
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W?:{u: [t, T)»—>X : v measurable, u(r) € P(A) for a.e. rc[t, T),
T T
Lummmwm<w mem<m}

lulw=([ 14®u@rde) "+ ([ 1aear)” o<

We also introduce the trace space at ¢:
Fi={u®): ue W§ 0<t<T,
with the quotient norm |a|ze=inf {||u[lys: u € W§ u(t)=a}.

An essential part of the proof is the following lemma. In the follow-
ing, C,, C,, C,, - - - are positive constants whose values are not specified.

Lemma 1. i) It holds I2=F7 and the norms ||allas, [|a|r: are equiva-
lent.

il) There exists a constant C such that || ullss<C||u ||y

iii) For each a € ¢ there exists some extension ue W¢ with a=wu(t)
and || ullwi<Cllallqs where C>0 is independent of a. Such an extension is
given by u(r)=e--249¢q for t << T.

Proof. First we observe that ¢CF¢. To show this, let a e I¢ and
put u(r)=e-“-24"gq, Then it follows easily form the definition that |[a||z:<
|ullwe=2|lallza<<oo. Thus we have a € F{.

Next we show the converse direction that F!Cd?. Let ae F? and
u(r)=0a with v € W?. Then we have the representation

’LL(T)=6'("“)A(‘)0,+JW e‘("*)"(‘)[u(s)—i—A(t)u(s)]ds.
[2
We put

u(e) = j " o- =040+ A()ulds.

Then we see that %,(t)=0 and %,(s)+A®)u,(s) =u(s) +A@)u(s) for t<s<T.
From the L? estimate when A is independent of = (see [2]) we see that

T T
jjmww<w, IJA@%@W%<m

which means that u, € W9¢. Setting u,(r)=e¢ ¢"?4¥q we obtain u,(c) =u(r) —
u,(2) for t<c<T. From u,u, € W we see u, ¢ W¢. It follows that
3.1) s llwe=2]|@[lqg< 00
So we have o € 97 and get F'¢=97.
From (38.1) we see that
2 aflgr=1tsllwe I lwe 41 21 e
By [2] (see (1.2)) it follows

nulnwgso(f ||u(‘t')+A(t)u(T)“qdf)wécllullwg-

Then we get 2| a|ls<C||u|lys. This holds for all uwe Wi with u(t)=a. It
follows
2|lallgs<C inf {lullys: v e Wi, ut)=a}=Cla|r:.
Therefore, we obtain F'7=9¢ with equivalent norms ||a (s, |[a|zs.
The properties ii) and iii) follow immediately.
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In the next lemma we shall state the crucial a priori estimate for (1.1).

Lemma 2. Let 1<q<oo, ue W¢ and set f(z)=1u(c)+A()u(z) for 0<z
<T where 0<T<oo. Then under the assumptions (2.1) a)-f) there exists
some C>0 independent of w and T such that

[ vateas+ [ 1 4@ ar<c (luo g+ [ 1 @)ae).

Proof. For simplicity, we carry out the proof only for T=oo0. Then
the case T< oo will be clear.

First we consider a subinterval [0, T,] with 0<T,< oo and then we
proceed to the next interval and so on. T, will be fixed later on.

Set a=u(0), uy(r)=e""4%g and u,=u—u,. Then by Lemma 1 we have
a e 9dg, u, € W¢, and therefore u, ¢ W¢. TUsing [2] we get

T3

c2 ([ nuln"dr)”‘#(ﬁ‘||A<0)ulnwr)”"sa(f:‘ I+ A, ede) .

Next we use the continuity of A(z)A(0)-* for z>>0 in the operator norm
by (2.1) e), and for given ¢>0 we can choose T, so small that

3.3 ( f A A©) —I1AO), qut>”q£e ( f 1A, n«df)”“.
From u=u,+u,, we get

(7" vaarae) ™+ ([ 1 a@ueieae) " <[ pawjeae)
+([ 1a@u@iras) ([T ire) ([T 1 4@ @ eae) .

Using (2.1) d) and u,(r) =e~4Ou(0)
@4 ([ tawlear) + ([ 1a@u@Ide) <([7 faolieas)

+6([7 1a@u@ i) <o [ 1 AuE rde) =, luO) ey
Using (3.2) and (3.3), and choosing ¢>0 sufficiently small it holds
(7 s+ A@u@iear)
- (Jj1 l|%:(z) + A(O)u,(7) + [A(t)—-A(O)]ul(f)”qdr)”q
=([" 1@+ a0u@id) - ([T 1@ - A0 )

> C,( I : 4t l|"dr>l/q n Cz( J : 1AO)u,(z) anr)l/q —e(f:‘ | A(0),(c) H‘*df)”"
>6([[ ez

We use this value as ¢ in all steps. We also get

([T 1a@u@ira) <c([ i@+ A@uisae)+([7 jarar)
<¢([7 @+ A@u @ de)

Combining these two inequalities, we obtain
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T1 1/9

([T ateae) +([ " 1a@u@irae) <o [ i+ A@urde)

1/q

<c{([7 1+ a@u@iedr) +([7 1+ Auge) eaz) |
<c{([" 1a+ A@u@iede) + ([ faleac) “+ ([ |A@u@de) )

SM< j ||u+A(t)u(f)uwr)”"+Nuu(0)||gg.

Here M, N are constants. We used (3.4) in the last inequality. Now we
obtain the result for the first interval [0, T]:

T1 1/q T 1/q
(3.5) ( fo ||un«dr) +(L HA(T)’LL(’L’)qu‘L')
1 1
<M([" i+ A@u@|de) " +N [uO g

We choose the next interval [T,, T,] in the same way as above. Here
we define for T,<t<T,, u,=u—1u, Ulc)=e ¢-Tv4Tvq and a=u(T,). In
this case we obtain (3.5) with 0 replaced by T, and T, replaced by T,, and
S0 on.

Now we shall show how to choose T,,T,, -+ -, T4, Tyoi=00; let T,=0.
We choose first the last point T, by using (2.1) f). Then [0, T,] is compact.
Hence the continuity by (2.1) e) holds uniformly for all 0<<t<T,. So
we can choose a finite number of points T, - .., T,_, for the same given
value ¢ as above. Then we get for v=0,1,2, ...,k

Ty+1 1/ Tyt1 1/
(7 pateas)+([7" 1@ ae)
Ty T,

<M([" it A@u ede) " N [T s,
This leads to
(3.6) < f - H@'I,quz'>”q+ (f: |1A(f)u(¢)n*Idf)”"

gM(f ||u<r)+A<r)u(r)||'Idr)”"+N 2: (T 5.

In the last step of our proof we show that we may remove the terms
|u(T,)|z, for v>0. We argue by contradiction. Suppose we find a se-

quence u, € W¢, p=1,2, -- -, such that (j” nu,,nqdr)”"+< j - HA(T)u,,(f)uwf)“"
0 0

=1 for all p, and (Iw ||’L'L,,+A(1)u,,||"dr>uq and ||,(0) |z tend to 0 as p—oo.
0
Applying (3.6) to u,, we see that
3.7 1<N lim inf (f llu,,(Ty)HF;,)-
y=1

pooo

From (3.5) and (2.1) d), we get the estimate
Ty 1/ T1 1/
(L ||?l||"dr) "+< J 0 ||A(T,)u(r)|["dr> ’

<c{([7 1+ A@u@Iede)  + e ).

We have also the next estimate using the definition of W¢ and 2.
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lu@lg, < int ([ jooiear)”+([ 1aayoea)”)

u(T1)=v(T1)

— inf {(jTT —||b(s)||qu)”"+(ﬁ” _||A(T,)a(s)||qu)"“}

u(T1) =3(T1)

<([naepae) +([7 | 14@uw)rdr)

([T 1a@ieae)” +([7 14@ G ae)

Here we set 9(s)=v(2T,—s) and T =2T, in the last part. Replacing « by u,
we see from the last two estimates and the assumption of contradiction that
lu,(T))|pz,—>0 as p—>oo,

Repeating the same conclusion to the next interval [T,, T,], we see that
lu,(T) | z2,—0 as p—co, and so on. It follows >k, [|u,(T,)[s2,—0 as p—>oo.

This fact contradicts the assumption. Lemma 2 is thus proved.

We shall complete this section by showing the existence of a solution
u of the evolution equation (1.1) for given a € ¢ and f € L0, T ; X).

The existence of the solution is already clear if A(z)=A(0) by [2,
Theorem 2.3]. Then we use ¢>0 and T, as in the proof above to obtain

[(A@AO)'—DAWO)V|<e|AO)v]|
for v e P(A(0)) and [0, T,] by (2.1) e). So we see
I[A()—AO)w||<e|A)w||  for all v e D(A).

Hence we obtain the existence of the solution in the general case A(z) by
using Kato’s perturbation theorem. Then we extend this solution to the
next interval [T}, T,] and so on. This yields the result of the theorem.

1/
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