162 Proc. Japan Acad., 67, Ser. A (1991) [Vol. 67(A),

42. On the Uniform Attractivity of Solutions of Ordinary
Differential Equations by Two Lyapunov Functions

By Laszlé HATVANI®
Bolyai Institute, University of Szeged, Hungary

(Communicated by Kunihiko KODAIRA, M. J. A., May 13, 1991)

1. Introduction. Consider the ordinary differential equation
(1) 2'=f(t, x) (f(t,0)=0 for all t e R, :=10, o)),
where f :R, X R"—R" is continuous.

K. Murakami and M. Yamamoto [10] have given sufficient conditions
for the global attractivity and equi-attractivity of the zero solution of (1)
based on Lyapunov functions with negative semidefinite derivatives. Nowa-
days such Lyapunov functions have been often used to investigate the
asymptotic behaviour of solutions [1-16].

As is well-known, the uniform stability properties are of practical im-
portance, e.g. if f satisfies a Lipschitz condition in 2 uniformly with respect
to t, then the uniform attractivity together with uniform stability imply the
total stability of the zero solution (see [12], Chapter II, Theorem 4.5).

In this paper we show that, after slightly strenthening one of them,
the conditions in Murakami’s and Yamamoto’s theorem of the global equi-
attractivity (Theorem 1 in [10]) imply also the global uniform attractivity.
In our second theorem we can guarantee the global equi-attractivity under
essentially weaker conditions than those of Murakami’s and Yamamoto’s
theorem on the global attractivity (Theorem 2 in [10]).

2. Notations and definitions. We use the n-dimensional real space
R* with the Euclidean norm |-|. If e R", FCR", we define the distance
between z and F by d(x, F):=inf{lz—y|: ye F'}. B(p) and B(p) denote the
ball of radius p>0 around the origin and its closure, respectively.

Definition 1. A measurable function ¢: R,—R, is said to be integrally

positive ifj‘ ¢(8)ds= oo for every set
I

(2) I=Up.[ay, ‘Bk]’ Bi—a,=>0>0 (ke N).
If, in addition to (2), the inequalities 4>8,—«a, (kK € N) are also required of
I, then ¢ is called weakly integrally positive [3].

It is easy to see that ¢ is integrally positive if and only if

(3) limint [ p(s)ds>0
t

t—rco

for every 7r>0. Moreover, if ¢ is integrally positive, then it is weakly
integrally positive, but the converse is not rue (e.g. ¢(¢) :=(1+¢)""). One of
the purposes of this paper is to emphasize that the weak integral positivity
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can often substitute for the integral positivity to guarantee non-uniform
stability properties [3, 4].

In the assumption on the derivative of the Lyapunov function we will
use a continuous function V*: R*—R,. Following Murakami and Yama-
moto, we denote by E(V*=0) the zero set of V*, and introduce the following
notations:

S(p):={zeR": dx, E(V*=0)<p} (p>0)
Apy, p) :=B(p)\B(p); H(py, 0):=8S()\S(o)  (0<p,<pp).

Definition 2. A function Z: R, X R*—R is said to be strictly non-zero
in the set E(V*=0) if for every 7, I' (0<y<[I") there are a number (7, I")
>0 and a measurable function &, ,: R,—R, with
(4) lim ¢, (9ds=c0  (teR.),

R-ow Jt
and such that Z does not change its sign and |Z(¢, )|>¢, (t) on the set
R. XA, DNS(, I)).

If (4) is satisfied uniformly with respect to te R,, then Z is called
uniformly strictly non-zero in E(V*=0).

If &, - is integrally positive (respectively, &, ,(f) =const.), then Z is called
definitely non-zero in the integral sense (vespectively, definitely non-zero) in
E(V*=0).

For teR,, 2,€ R® we denote by x(t; t, 2,) any solution of (1) with
(g5 to, %o) =20,

Definition 3. The zero solution of (1) is said to be globally attractive
if |x(t; ty, )| >0 as t—oo forallt e R,, @, € R*. It is globally equi-attractive
if the convergence is uniform with respect to x, e B(¢) for every ¢>0. If
the convergence is uniform with respect to ¢, e R,, too, then the zero solu-
tion is called globally uniformly attractive.

We denote by Cy(x) the family of continuous functions V: R, X R*—~R
which satisfy a Lipschitz conditions with respect to . For a V e C(z) we
define the derivative of V with respect to (1) (see [15]) by

lim sup {(L /WIV(t-+h, &+ 1f (b 2) = VB, D).

K denotes the class of continuous functions a: R,—R, which are
strictly increasing and vanishing at zero.

The results. Theorem 1. Suppose that there are functions V, We
C,(x) satisfying the following conditions in the set R, X R*:

1) a(zDLKVE, 2)<b(z]), where a, b e X, and a(r)—oo as r—co;

2) V', )< —o@V*(@)+ (&), where V¥: R*—R, is continuous, ¢ 1is
integrally positive, and : R.—R, s integrable over R, ;

3) there exists an L such that |W(t, 2)|<L;

4) W'(t, x) is uniformly strictly non-zero in the set E(V*=0);

5) for any compact set M C R" and for any locally absolutely continu-
ous function u: R,—M, the function I: f(s, u(s))ds is uniformly continuous

on R,.
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Then the zero solution of (1) is uniformly globally attractive.

Proof. It can be devided into eight steps:

1° The zero solution is eventually uniformly stable [15], i.e. for every
¢>0 there are {,(¢), 6(e)>0 such that [t >t,>¢;, |%,|<d(e)] imply |x(t; ¢, 2,)]
<e.

In fact, consider the function U(¢, 2) : =V (¢, x)+£° v. By condition 2),

U is nonincreasing along any solution x; therefore, we have the inequality
ale®D+[ ¥ <UE, &) <Ut ) <b(amD+ [ 4

for all t>t,. Let {,(c) be chosen so that r v<a(e)/2,and let 5(c) : =b-(a(c)/2).
If t,>¢, and |x,|<d, then a(lx(t)|)<a(s)ztdnd, consequently, |z(t)|<e for all
t>1,.
B 02° The solutions are uniformly bounded [15], i.e. for every ¢>0 there
is a I'(¢) such that [t>%,>0, |2,| <ol imply |z(t; t,, 2))|=>1"(0).
In fact, for any solution x with |#,|<<¢ we obtain a(x(@)DSU®E, ()<
b(o)+f r, 80 the choice I'(¢): —a“(b(a)+j W) is suitable.

3° In order to prove the assertion of the theorem we have to show that
for every ¢>0, >0 there is a T(g, 7) such that if || <o, then |2 (t; ¢, 2,)|<7
for all {,e R,, t>t,+T(0o,7). In the consequence of the eventual uniform
stability of the zero solution (see 1°), to this end it is enough to prove the
existence of T(s,7) and t, e [ty t,+T(o,7)] with the properties t,>¢(y),
[2(t,)]|<6(p).

Let 6>0, >0 be fixed. Suppose that ¢,>¢,(p), |2|<o and |x(t; t,, 2,)|
>6(=:7(@ =7 for all t € [ty t,+ Tyl i.e. 2(t) e A(r(p), I'(¢)) on the interval
[t to+T4]. Consider the number »=7(r(y), I'(¢)) and the function & =&, r.,
corresponding to the function W’(t,x) in the sense of condition 4) and
Definition 2.

4° There exists an upper bound T,=T(s,7) for the length of any
interval of time [«, glC[¢,, t,+ T4] while the point x(t)==z(t; ¢, 2,) can be
staying in S(r).

In fact, by (4) there is a T,=T,(s, ) such that

IHTI Sr(q),r(u)(s) ds>2L for all teR,.

Since
2L >|W(a, #(@)— W, z(§)|=> lf W(t, %(t) dt\ > j "e(s)ds,

the inequality f—a<T, has to be satisfied.
5° There exists an upper bound T,=T.(e,7) for the length of any
interval of time [«, g1C[t, t,+T4] of staying out of S(r/2).
Let
my=my(e, n) : =min{V*(x): x e B(IN\S(r/2)}.
Then

0 B B
b(o)—I-L >U@)—U@)> Lgo(t)V*(x(t))dthl j 0.



No. 5] Uniform Attractivity of Solutions 165

By property (8), the existence of T.(o, ) follows from the integral positivity
of ¢.

6° There exists a positive lower bound T;=T,(g, 5) for the transit time
while «(t) is crossing H(r/2, r).

If 2(a) e S(r/2) and z(p) & S(), then 7/2<| () — 2()|= Uﬂ Ft, #(t) dt‘ .
By condition 5), there is a T;=T,(s, 7) such that |a—g|<T, ir‘;aplies |2 () —
2(B)|<r/2. This T, is suitable for the desired lower bound.

7° There is an upper bound M =M(g, ») € N for the number of crossing
H(r/2, r).

In fact, introducing the notation

My=maa, 7) : =(1/2) lim inf j” o(s)ds
t—oco t
we have
+T3g 1
j‘ 0>3m,/2, j < 1142
13 t
for t>¢, with some sufficiently large {,={(a, 7)) >,(0, 7).

Since U'(t, x(t) < —o()V*(x(t)), the function U(t, z(t)) decreases at
least by m,m, while x(¢) is crossing H(r/2, r) after &,. But U@, z(¢)) is de-
creasing and 0<U(t, (£))<b(¢)+ | + in the whole interval [t,, o), so x(t)

0
can cross H(r/2, r) in [{,, o0) N [¢y, to+ T4l at most

M=M, ) :=[(b(a)+J: «!») / gl +2

times, where [s] denotes the integral part of se R.

8° Define now the number

T(o, n) : =80, D)+ M(o, n) +1)(T (g, )+ Ty(a, 7).

It is easy to see that T,<T(s,7), i.e. 2(¢) cannot remain in the annulus
A(r(p), I'(0)) longer than T(s,7n). This means that there is a ¢, e[ty t,+
T(o, p)1 with |2(t,)|<r(p), and, by the definition of 7(»), |x(t)|<y for all
t>t,+T(o, 7).

The proof is complete.

The following theorem can be proved similarly.

Theorem 2. Suppose that there are functions V, W e C(x) satisfying
the following conditions in the set R, X R™:

1) a(zD<LV(E, x), where a e K and a(r)—>c0 as r—oo;

2) V(i )< —o@V*(@)+(t), where V*: R"—R, is continuous, ¢ s
weakly integrally positive, and \: R,—R, is integrable over R, ;

8) for every 1, I' (0<r<I) there is a function c=c, r € K such that

|W(t, ©)|<c(d(z, E(V*=0))) teR,,zcAG,1);

4) W'(t, x) is definitely non-zero in the integral sense in the set E(V*
=0);

5) for any compact set M CR" and for any locally absolutely continu-
ous function u: R,—M, the function J: f(s, u(s))ds is uniformly continuous

in R,.
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Then the zero solution of (1) is globally equi-attractive.

4. Remarks. 1. In Theorem1 of [10] the function W'(t, ) was sup-
posed to be only strictly non-zero in the set E(V*=0), but only global equi-
attractivity was proved. Itis worth noticing that this result can be deduced
also from localization theorems [2, 3, 8,12].

In fact, from Corollary 3.2 in [2] it follows that x({)—>E(V*=0) as
t—oco for every solution £. On the other hand, since W is bounded and W’
is strictly non-zero, for every r, I' (0<r<I") there is an r=(, I')>0 such
that the point ®(t) cannot remain in the set A7, I))NS(r) for a long time.
These facts yield 2(t)—0 (t—o0) due to the eventual uniform stability of
the zero solution (see step 1° in the proof of Theorem 1).

2. If in condition 2) in Theorem 1 we require only the weak integral
positivity of ¢ instead of the integral positivity, then we can guarantee
only global equi-attractivity.

3. If 4(t)=0 in condition 2) in Theorem 1 (Theorem 2), then the zero
solution of (1) is globally uniformly asymptotically stable (globally equi-
asymptotically stable, respectively) (as for the definitions see e.g. [6]).

4. 1In [10], instead of our 5), the following condition was required:
for any compact set M CR" there are a number N and a function » such

that j”l 70 (t—>00) and | F(¢t, z)|<N+7() for all te R,, we M. It can be

seen tilat this condition implies our condition 5), but the converse is not
true.

5. Our Theorem 2 improves and sharpens that of [10]: in [10] ¢ was
integrally positive and W’ was definitely non-zero in E(V*=0); neverthe-
less, only the global attractivity was guaranteed.
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