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60. On the Reduction of Binary Cubic Forms
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Gakushuin Girls’ High School

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1990)

In a former paper [1], we used the quadruple of integers, named Voronoi
quadruple (abridged V-quadruple), to obtain an integral basis of an order of
a cubic field. The same quadruple has been already used by Mathews [2]
to develop a theory of reduction of binary cubic forms with negative dis-
criminants. Davenport [3] has given a reduction theory for the case of
positive discriminants using another method. In this paper we shall give
a reduction theory of binary cubic forms with positive discriminants using
the quadruple introduced in [1]. Our main results will be givenin §1. In
a subsequent note II, applying this theory and that of Mathews’ [2] to the
theory of cubic fields, we shall give a method of the construction of a table
of non-conjugate cubic fields with discriminants less than a given positive
number in absolute value.

§1. A binary cubic form

(1) S, y)=ax*+bx*y+cry*+dy’, (a,b,c,d)eZ
and another cubic form
(2) @, =+ ’y+c ey +dy’, (@,b,c,d)eZz

are defined to be equivalent if there exists a set of integers p, ¢, », s which
satisfy

(3) I'@,9)=F@r+qy, ro+sy), ps—qr==1.
We express the equivalence as f~ f or (¢, b, ¢, d)~ (&, b’, ¢, d’). Insuch a

case, we can write M= <£ g), M e GL(2, Z), and it is easily verified that
((1/, b/, C/, dl)=(a" b9 (4 d)M’

where
p*  3pq 3pq’ q
_|p*r  p(ps+2qr) q@ps+qr) s
M= prt  r@ps+ar) sps+2qr) gs*|© GL4, 2).
7 3r’s 3rs st
The mapping v: M—M gives an injective homomorphism from GL(2, Z) to
X/s Xs
12V 2 A
GL(4, 2) a3 | g | =M | F 55| Tollows from ["15] =M[‘§].
Y/B Y3

The discriminant of the form (1) is the invariant
D=0b%—4ac*—4b*d+18abcd —27a*d’.
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The Hessian of the form (1) is the quadratic covariant
(4) h(z, y)=Ax*+Bxy +Cy’,
where
A=0b"—-3ac, B=bc—9ad, and C=c*—3bd.
We write H(a, b, ¢, d)=(A,B,C). A simple calculation shows that if the
equivalence (3) holds between the cubic forms (1) and (2), then
K (%, y)=h(pz+qy, ro+sYy)
holds between the corresponding Hessians, where
W(x,y)=Ax*+ B xy+Cy.
In this case, we have
(4, B, C")=(A, B, C)M,
where
. [202 2pq q°
M=\|pr ps+qr qs| € GL(3, Z).
r? 2rs sz]

The mapping v,: M—M gives a homomorphism with kernel {((1) (1)), —

<(1) (1)>}, from GL(2, Z) to GL(3, Z), as [X’;’] =M lX}Z’] follows from l%] =

Y/2 YZ
M [)Ig] If D> 0, the Hessian is positive definite, and we have always
(5) 4AC—-B*=3D>0, A>0, c>0.

Hermite has called the binary cubic form (1) reduced if its Hessian (4)
is reduced, that is, if (4, B, C) satisfies
(6) 0<B<A<C.

Two equivalent reduced cubic forms f and s’ do not necessarily coincide,
as shown by a counter-example:

J@, y)=a"—6xy’—2v°, f'(x,y)=[f(@+Yy, —y)=a"+32"y —3zy*—3Y’,
h(x, ¥)=Hh(z, y) =182+ 1821y + 36y%, where f and s’ are reduced and f~ f/,
but f+1".

Now, we introduce the following definition:

Definition 1. If a binary cubic form (1) with discriminant D>0 and

its Hession (4) satisfies
I 0<B<A<LC,
1I a>0,
III A=B implies 3a—2b>0,
v A=C, A+B implies a—|d|<0,
A% B=0 implies d <0,
then we call the cubic form (1) strictly reduced.

In § 2 we shall prove:

Theorem 1. For any binary cubic form f(x, y) with positive discrimi-
nant, there exists a strictly reduced form f'(x, y) whichis equivalent to f(x, ).

In our proof, we shall give a procedure of reduction.
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In § 8, we shall prove furthermore:

Theorem 2. If two strictly reduced binary cubic forms are equivalent,
they coincide.

Throughout this note, ¥, V,, ¥V, will denote three sets defined as follows:

V={(,b, ¢, d) € Z*|ax’+ b2’y +cxy*+dy® is irreducible over Q and D> 0}

Vi={(a, b, ¢, d) € V|ax’+ba*y -+ cxy’ +dy* is reduced}

Vi={(a, b, ¢, d) € V}|ax’+ba*y +cxy*-+dy’ is strictly reduced}

§2. In §§2, 3 of this paper will occur the following 8 special matrices
belonging to GL(2, Z) :

=3 Fr=(1 ) e=(_8 ) p=(2 ) a=(T10).

01 1 0 11

R=(1 5) 5=(0 -1) 7=(0 1)

In the following four lemmas, we assume (a, b, ¢, d), (@, b, ¢, d) eV,
@,v,c,d)=(a,b,c,d)M, and (A’,B’,C)=(A, B,C)M, where M=uv(M),
M=y,M), M e GL(2, Z), and (A, B, C)=H(a, b, ¢, d).

Lemma 1. In caleulating (o, b, ¢, d) and (4’,B’,C") for given (&, b,
¢, d) with Hessian (4, B, C) for M=—I1,P,R, —R, S, T", we obtain:

M M- (,0b,c,d) (A',B,C)
@ —I -1 (—a,—b,—c, —d) (4,B,0)
@ P P (2,3a—0,30—2b+c,a—b+c—d) (A,2A—B,A—B+()
3 R R (dcb,a) (C,B,A)
4 —-R —R (—d,—c¢, -0, —a) (C,B, A)
G S S ( a —b, ¢ —d (4, —B,0)
®© T (a, 3na+b, 3nta+2ndb+c, (4, 2nA+B,

na+n*b+ne+d) n*A+nB+C)

Lemma 2. In each of the cases (1)-(5) of Lemma 1, the following holds:
1) V,s(,b,cd) & V,s(@,6b,c,d)

@2 V,s(@,b,c,d), A=B & V,s@,kb,c,d), A=B

@ V,s(,b,c,d), A=C <& V,s@,b,c,d), A=C

4 V,s(@,b,ed), A=C & V,a(@,kb,cd,d), A=C

G) Vis(@,b,e,d), B=0 <& V,»(,b,c,d), B'=0

Lemma 3. In each of the cases (1)—(5) of Lemma 1, the following ine-
quality holds :

1) ad’<0,

@) (Ba—2b)(8a’—2b")<0,

@) (e—d)@' —d)<0,

@ (a+d) (@' +d)<0,

B) dd'<o.
We omit the easy proofs of Lemmas 1-3.

Lemma 4. f(x,y)=ax’+bx*y+caxy*+dy’ is reducible over Q, if one of
the following conditions (1), (2), (3) holds:

(1) A=B, 30—2b=0,

@2 A=C,A+—-B,a—d=0,
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B) A=C,A+B,a+d=0.
Indeed, we have under each of these conditions:

O f, y)=(2w+y)<%x2+%xy+dyz>,

2 S, y)=@+y)(az’—(a—db)zy+ay?),
@) S, y)=(@—y)(ax’+(@+b)ry+ay®).

Proof of Theorem 1. We prove the theorem by showing the procedure
of performing actually successive linear transformations of (a,, b,, ¢;, d,) in
V to obtain a (a, b, ¢, d) in ¥V,. Put (e, b, ¢, d)=(a;, by, ¢;, dy). 1) Apply R if
neccesary, to get A<<C (where, “apply R” means, “apply v(R) to (a, b, c, d)
to obtain (¢/,?, ¢, d')=(a, b, ¢, d)v(R), and simultaneously, apply v,(R) to
(4, B, C)toobtain (4’, B/, C")=(4, B, C)v,(R), where (4, B, C)=H(a, b, ¢, d)”’).
Rewrite now (o/, %', ¢, d’) by (a, b, ¢, d) to go to the next step. (We always
do the same to go on, without repeating this comment.) 2) Apply —I if
neccesary, to get a>0. 3) Apply T" with appropriate n, to get —A<B<A.
4) If B<0, then apply S to get 0<B<A. 5) If A>C, go back to 1) and
repeat the same procedure. Since we have A>0, C>0, and the value of
A decreases each time as we proceed, we get 0<B<A<C and a>0 after a
finite number of these procedures. 6) If 0<B<A<C, we are done. 7) If
0=B <A <C, applying S if neccesary, we obtain (a, b, ¢, d) inV,. 8)If A=B,
we apply P if neccesary and obtain (a, b, ¢, d) in V, in view of Lemma 4 (1).
9) If 0<B «<A=C, according to >0 or d <0, we apply R or —R if neccesary
and obtain (a, b, ¢, d) satisfying I-IV of Definition 1 in view of Lemma 4
(2) or (3). 10) if B>0, we are done. 11) If B=0 applying S if neccesary,
we can find (a, b, ¢, d) in V,.

§ 3. Inthe following three lemmas, we assume (a, b, ¢, d), (a/, 0, ¢, d')
eV, @,b,¢,d)=(a,b,c,dM and (4’, B, C")=(4, B, O)M, where M=u(M),

W =v,(M), M=(f g) e GL(2, Z) and (A, B, C)=H(a, b, ¢, d).

Lemma 5. In this situation, we have
@ @A,B,C)=(A,B,0),0<B<A<C.
(2 (Ap°+Bpr+Cri=A,

3 {Zqu +B(ps+qr)+2Crs=B,

@) \|\A¢*+Bgs+Cs*=C.

6) ((A—B)pr=0,

(6) {(A-—C)7“2=0,

M p+pr+ri=1.

o (1)-=().=(2)=( )

Proof. (1) is obvious from the definition of V,. (2)-(4) follow in re-
writing (1). (5)—(7): Ap*+Bpr+Cri=A, B>0 implies pr <0 which implies
Apr<Bpr. A<C implies Ar*<Cr*. Clearly p*+pr+r>1. Ap*+Bpr+
Cr>A@* +pr+1r)>A=Ap*+Bpr+Cr:. By considering these inequalities,
we obtain (5)-(7). (8) is clear from (7).
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Lemma 6. In this situation, we hove
(1) B<A<C implies M= +1,
() B<A=C implies M=+1, +R,
B) B=A<C implies M= +1, +P,
4 B=A=C implies M=+1, +F, +G, +P, +@Q, =R.
1

Sketch of proof. Case (1) B<A<C: By Lemma 5 (5)-(7), <£) = <0>

ps—qr+1 implies s=-+1. By Lemma 5(8), =249 +Bps=B. B <A implies
q=0, ps=1. Thus, M=+1.

Case (2) B<A=C: By Lemma 50, @, (2)=x(g), (). @-D:

1t ()= x(g) then =T as in case . @-2): 1t (¥)==(7), then by
Lemma 5(3), Bqr+2Cs=B. B<C implies s=0, gr=1. Thus M==xR.
Case (8) B=A<C: By Lemma 5(6), (8), (3), 29+s=mn, (g>= (g),

(_g). Thus, M= +1I, +P.

Case (4) B=A=C: By Lemma 5(4), ¢’+g¢s+s'=1. Thus, <g>=

i((l))’ i(g)’ :t(_i). By Lemma 5(8), 2pq+ps+gr+2rs=1. (4-1): If
(2)=((): then x@a+9=1. ({)==(3), =(_]). ThusM=x1, 2P.
€ 1 ()=(l) v s, (=l =(]). e

M=+R, +G. (4-3): If (f}):i(_i), then +(q—s)=1, (§)=i((1))
i(_g). Thus, M=+F, +Q.

Lemma 7. (1) A=B=C implies c=—3a+b, d=—a and vice versa,

(2) A=B=C and (M=F or M =G) implies (¢/, V', ¢’, d)=(a, b, ¢, d),

(8) A=B=C and (M=P or M=Q or M= —R) implies (&', V', ¢/, d)
=(—d, —¢, —b, —a) and 30’ —2b' = —(3a—2D).

Sketch of proof. (1) As Be—Cb=38Ad, Bb—Ac=3Ca, A=B=C im-
plies ¢c—b=38d, b—c=38a which implies ¢c=—3a+b, d=—a. Conversely,
c=—38a+b, d=—a implies A=B=C=9a*—3ab+b"

(2) If M=F, then (o, b, c,d)=(—a+b—c+d, —3a+2b—c, —3a+D,
—a)=(a, b, ¢,d). If M=@G, then (¢/,V, ¢, d)=(—d, c—3d, —b+2c—3d, a—
b+ec—d)y=(,b,c, d).

(3) If M=P, then (¢, b, ¢/, d)=(a, 3a—b, 3a—2b+c¢, a—b+c—d)
=(—d, —¢, —b, —a). If M=Q, then (@, ¥, ¢, d)=(—a+b—c+d, b—2¢
+38d, —c+38d, d)=(—d, —e¢, —b, —a). 3a’—2b'= —(8a—2b) is easily seen.

Proof of Theorem 2. We assume that (a,b,c¢, d), (0,0, ¢, d)eV,
@,Vv,¢,d)=(a, b, ¢, M, v*(M)=M e GL(2, Z). Our aim is to obtain
@,V,c,d)=(,b,c,d). Considering the Hessians H(e, b, ¢, d)=(4, B, ),
H@, v, c,d)=(4", B, with (4, B, C")=(A, B, C)M, we have (4, B’, C)
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=(4, B, C) by Lemma 5 (1). To perform the proof, we break up the con-
dition 0<B<A<Cinto four cases: (1) B<A<C, (2)B<A=C,(8)B=A<C,
4) B=A=C.

In case (1), by Lemma 6 (1) and II (i.e. the second condition in Defini-
tion1 §1. In the follwing, we shall quote in this way the conditions
given in Definition 1), we see M =1.

In case (2), by Lemma 6 (2), we see M=+1, +R. We subdivide now
the cages. (2-1): If M=+1I, then M=I by II. (2-2-1): If M=4+R, d>0,
then M=R by II. By Lemmas 1-3 (3) and Lemma 4 (2), we find o' —d'=
—(a—d)>0 which contradicts to IV. (2-2-2): If M=+R, d<0, then
M= —R by II. By Lemmas 1-3 (4) and Lemma 4 (3), we find o'—|d'|=
o’ +d =—d—a>0, which contradicts to IV.

In case (3), by Lemma 6 (3) and II, we have M=1I, P. If M=P, then
by Lemmas 1-3 (2) and Lemma 4 (1), we find 3a’—2b'= —(8a—2b) <0,
which contradicts to III.

In case (4), by Lemma 6 (4) and II, we have M=1I, F, G, P, Q, —R.
4-1): If M=F, G, then by Lemma 7 (2), we find (¢/, ¥, ¢, d)=(a, b, ¢, d).
4-2): If M=P, Q, —R, then by Lemma 7 (3), we find 3a’—2b'= — (3a— 2b)
<0 which contradicts to III. This completes the proof of Theorem 2.

References

[1] M. Arai: On Voronoi’s theory of cubic fields. I. Proc. Japan Acad., 57A, 226-229
(1981).

[2]1 G. B. Mathews: On the reduction and classification of binary cubics which have
a negative discriminant. Proc. London Math. Soc., (2) 10, 128-138 (1912).

[38] H. Davenport: The reduction of a binary cubic form. I. J. London Math. Soc.,
20, 14-22 (1945).






