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49. Note on Isometry Invariant Geodesic on Two
Dimensional Spherical Manifold™**

By Tetsunori KUROGI
Fukui University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1990)

Let s be an isometry on a Riemannian manifold. Then a geodesic ¢ is
called “f-invariant” (or isometry invariant geodesic) if f(c(¢))=c(t+1)
for any te R. In general such a geodesic is not necessary closed except
isometry of finite order. (We studied the structure of such a geodesic for
an isometry of finite order [2], [3].) It is very interesting to ask what iso-
metry has an invariant closed geodesic. There is no general information
about this problem other than the following theorem : if there is only a finite
number of geodesics, then it is closed [1] (cf. [5]). In this note we assert
that any isometry of small displacement on two dimensional spherical mani-
fold has an invariant closed geodesic. Though our result can be proved
by using Theorem 3.2 [1], we give here directly another proof because our
method is very elementary and more geometrical.

An isometry f on a Riemannian manifold M is called “small displace-
ment” if for each 2 e M there is a unique minimizing geodesic from x to
f(x). Our main resuit is the following

Theorem. Let M be o Riemannion manifold homeomorphic to S:. Let

J be a small displacement. Then thereis a closed f-invariant geodesic which
18 not a point curve.

The real valued function 6, on M is defined by ¢,(x)=d(x, f(x)) where d
is a distance function of M and 7 is an isometry. InT4] Ozols has studied
the critical point of §,. Let Crt(f) be a set of critical point of 4%, then
Crt(f)=F(f)U (critical point of ¢, on (M —F(f)) where F(f) is a set of a
fixed point of f.

Fact. Let f be a small displacement. Then x € Crt(f)—F(f) if and only
if f preserves the minimizing geodesic from x to f(x).

If M is compact, then ¢} has a maximum point on M. Thus we have

Lemma 1. Let f be a small displacement on a compact manifold. Then
there exists a f-invariant geodesic which is not a point curve.

By this lemma we have only to prove the theorem when our isometry
is not finite order. From now on we assume that Riemannian manifold is
homeomorphic to S* and s is a small displacement of which order is not
finite. Since f is a small displacement, f is homeomorphic to 1 and so
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tF(H=2.

Lemma 2. If F(f)={p, q}, then q is a cut point of p.

Proof. Let T, (M) be a tangent plane of M at p. Then the differential
S« at p is a rotation on T ,(M). The rotation is irrational because the order
of f is not finite. Now let v, e T, (M) be a vector such that exp,(v,)=¢ and
|v,|=r. Since {fi(v,)} (neZ) is dense in S,(1={ueT (M); |u|=r}, there
exists a subsequence {f}(v,)} such that lim,.. f(v,)=u for any ueS,(r).
Thus we have exp,(w)=exp,(im,.., f#(v,)=lim,... f*(exp,(v,))=q which
implies ¢ is a cut point of p. Q.E.D.

The proof of Lemma 2 implies that the following lemma which means
M is just like a surface of revolution.

Lemma 3. Let C,, be a minimal geodesic from p to q. Then we have
M=Unez fn(Cpq)'

Proof. Let v, be a tangent vector of M at p such that C,,({)=exp,(tv,)
(0<t<1) and |v,|=7. Let z be any point of M which « is not a cut point
of p, we can take a subsequence {f2((a/7)v,)} such that lim,_.. f2((a/7r)v,)=u
for u=exp,'(x) because {fz((¢/7)v,)} is dense in S,(a). Since exp, ((a/7)v,) €
C,, and lim, .., f"(exp,((a/r)v,)=2, we have 2 € _,c, f"(C,,). On the other
hand let = is a cut point of p, then x=¢q and so consequently we have

Lemma 4. Let C,, be o minimizing geodesic from p to q. If 5,(x)=
max,cq,,8,(%), then the minimizing geodesic from x, to f(x,) is f-invariant.

Proof. We have only to show that 4, is local maximum around .
Then the conclusion follows from Fact. Let y be a point near x,, Then
there is a point x € C,, by Lemma 3 such that lim, ., f*(x)=y and the point
x is also near x,. Since z, is a maximum point of §, on C,,, d(x,, f(x)) =
d(x, f@N=d(f"(®), f(f"(x))) and so d(@,, f(xy)Zlim,.. d(f"(x), f(f*(@))
=d(y, f(y)) which implies 4, is local maximum at . Q.E.D.

Proof of Theorem. Let ¢ be a geodesic obtained by Lemma 4 with ¢(0)
eC,, and f(c(0)=c(r) € f(C,,). Here we have only to show ¢ is a closed
curve. Let ¢{,=min{¢t|d(®, c®)=k,, 0<t<1} and t,=max {t|d(p, c{))=k,,
0<=t<1} where Fk,=min{d(p, )|z € c([0, 7]} and k,=max{d(p, x)|ze
c([0,rD}. Without loss of generality we can assume that ¢, <¢,.

Case I. t,=t,: This implies k,=k,. On the other hand by Lemma 3
we have ¢= U f"(c([0, r])) because ¢ is f-invariant. Thus we have c is closed.

Case II. ¢, <t,: If k,=k,, cis closed by the same argument as the case
I. And so assume k,#k,. (1) Suppose ¢(¢) ¢ C,,. Let x, (¢=1, 2) be points
on C,, and f(C,,) respectively with d(p, z,)=d(p, ¢(t,)). Put e=min{d(x,,
c(t)), d(xy, c(ty)}, then there is » such that max,c,, ., d@, f"(@)<e/b by
the above ¢= U f*(c([0, 7])) and by Lemma 3. Here we can assume that
d(x,, c(t))<d(x,, f*(c(t)) and d(x,, c(t,))>d(x,, f~(c(t,)) without loss of gener-
ality. Since d(p, c(t))=d(p, f*(c(t,)) (¢=1,2) and dim M=2, the geodesic
c|[0,7] and f"-¢|[0, r] intersect at least two points y,, y,. Thus ¥, ¥, are
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joined by two geodesic arcs: one is a part of ¢|[0, 7] and the other is a part
of f*-c|[0,7]. However this is impossible because ¢|[0, ] is a unique mini-
mal geodesic joining ¢(0) and c¢(r). (2) Suppose c(t) € C,, (i.e. c(t)=c(0)),
then c(f,) must be an interior point of ¢([0,r]) because k,#k,. Put e=
d(x,, c(t,)) then we have a contradiction as same as (1). Thus (1) and (2)
imply k,=k, and hence ¢ is closed. The both cases imply ¢ is a closed curve
which is not a point curve by our construction. Q.E.D.
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