49. Note on Isometry Invariant Geodesic on Two Dimensional Spherical Manifold*,**

By Tetsunori KUROGI Fukui University

(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1990)

Let f be an isometry on a Riemannian manifold. Then a geodesic c is called "f-invariant" (or isometry invariant geodesic) if f(c(t)) = c(t+1) for any $t \in R$. In general such a geodesic is not necessary closed except isometry of finite order. (We studied the structure of such a geodesic for an isometry of finite order [2], [3].) It is very interesting to ask what isometry has an invariant closed geodesic. There is no general information about this problem other than the following theorem: if there is only a finite number of geodesics, then it is closed [1] (cf. [5]). In this note we assert that any isometry of small displacement on two dimensional spherical manifold has an invariant closed geodesic. Though our result can be proved by using Theorem 3.2 [1], we give here directly another proof because our method is very elementary and more geometrical.

An isometry f on a Riemannian manifold M is called "small displacement" if for each $x \in M$ there is a unique minimizing geodesic from x to f(x). Our main result is the following

Theorem. Let M be a Riemannian manifold homeomorphic to S^2 . Let f be a small displacement. Then there is a closed f-invariant geodesic which is not a point curve.

The real valued function δ_f on M is defined by $\delta_f(x) = d(x, f(x))$ where d is a distance function of M and f is an isometry. In [4] Ozols has studied the critical point of δ_f . Let $\operatorname{Crt}(f)$ be a set of critical point of δ_f^2 , then $\operatorname{Crt}(f) = F(f) \cup (\operatorname{critical point of } \delta_f \text{ on } (M - F(f)) \text{ where } F(f) \text{ is a set of a fixed point of } f$.

Fact. Let f be a small displacement. Then $x \in Crt(f) - F(f)$ if and only if f preserves the minimizing geodesic from x to f(x).

If M is compact, then δ_f^2 has a maximum point on M. Thus we have Lemma 1. Let f be a small displacement on a compact manifold. Then there exists a f-invariant geodesic which is not a point curve.

By this lemma we have only to prove the theorem when our isometry is not finite order. From now on we assume that Riemannian manifold is homeomorphic to S^2 and f is a small displacement of which order is not finite. Since f is a small displacement, f is homeomorphic to 1 and so

^{*} Dedicated to Prof. Akio HATTORI on his 60th birthday.

^{**} This research was partially supported by Grant-in-Aid for Scientific Research (No. 58540018), Ministry of Education, Science and Culture of Japan.

F(f) = 2.

Lemma 2. If $F(f)=\{p, q\}$, then q is a cut point of p.

Proof. Let $T_p(M)$ be a tangent plane of M at p. Then the differential f_* at p is a rotation on $T_p(M)$. The rotation is irrational because the order of f is not finite. Now let $v_p \in T_p(M)$ be a vector such that $\exp_p(v_p) = q$ and $|v_p| = r$. Since $\{f_*^n(v_p)\}$ $(n \in Z)$ is dense in $S_p(r) = \{u \in T_p(M); |u| = r\}$, there exists a subsequence $\{f_*^{n_i}(v_p)\}$ such that $\lim_{t\to\infty} f_*^{n_i}(v_p) = u$ for any $u \in S_p(r)$. Thus we have $\exp_p(u) = \exp_p(\lim_{t\to\infty} f_*^{n_i}(v_p)) = \lim_{t\to\infty} f_*^{n_i}(\exp_p(v_p)) = q$ which implies q is a cut point of p.

The proof of Lemma 2 implies that the following lemma which means M is just like a surface of revolution.

Lemma 3. Let C_{pq} be a minimal geodesic from p to q. Then we have $M = \bigcup_{n \in \mathbb{Z}} f^n(C_{pq})$.

Proof. Let v_p be a tangent vector of M at p such that $C_{pq}(t) = \exp_p(tv_p)$ $(0 \le t \le 1)$ and $|v_p| = r$. Let x be any point of M which x is not a cut point of p, we can take a subsequence $\{f_*^{n_i}((a/r)v_p)\}$ such that $\lim_{t\to\infty}f_*^{n_i}((a/r)v_p) = u$ for $u = \exp_p^{-1}(x)$ because $\{f_*^n((a/r)v_p)\}$ is dense in $S_p(a)$. Since $\exp_p((a/r)v_p) \in C_{pq}$ and $\lim_{t\to\infty}f^{n_i}(\exp_p((a/r)v_p) = x$, we have $x \in \overline{\bigcup_{n\in Z}f^n(C_{pq})}$. On the other hand let x is a cut point of p, then x=q and so consequently we have $M = \overline{\bigcup_{n\in Z}f^n(C_{pq})}$.

Lemma 4. Let C_{pq} be a minimizing geodesic from p to q. If $\delta_f(x_0) = \max_{x \in C_{pq}} \delta_f(x)$, then the minimizing geodesic from x_0 to $f(x_0)$ is f-invariant.

Proof. We have only to show that δ_f is local maximum around x_0 . Then the conclusion follows from Fact. Let y be a point near x_0 . Then there is a point $x \in C_{pq}$ by Lemma 3 such that $\lim_{t\to\infty} f^{n_t}(x) = y$ and the point x is also near x_0 . Since x_0 is a maximum point of δ_f on C_{pq} , $d(x_0, f(x_0)) \geq d(x, f(x)) = d(f^{n_t}(x), f(f^{n_t}(x)))$ and so $d(x_0, f(x_0)) \geq \lim_{t\to\infty} d(f^{n_t}(x), f(f^{n_t}(x))) = d(y, f(y))$ which implies δ_f is local maximum at x_0 . Q.E.D.

Proof of Theorem. Let c be a geodesic obtained by Lemma 4 with $c(0) \in C_{pq}$ and $f(c(0)) = c(r) \in f(C_{pq})$. Here we have only to show c is a closed curve. Let $t_1 = \min\{t \mid d(p,c(t)) = k_1,\ 0 \le t \le 1\}$ and $t_2 = \max\{t \mid d(p,c(t)) = k_2,\ 0 \le t \le 1\}$ where $k_1 = \min\{d(p,x) \mid x \in c([0,r])\}$ and $k_2 = \max\{d(p,x) \mid x \in c([0,r])\}$. Without loss of generality we can assume that $t_1 \le t_2$.

Case I. $t_1=t_2$: This implies $k_1=k_2$. On the other hand by Lemma 3 we have $c=\bigcup f^n(c([0,r]))$ because c is f-invariant. Thus we have c is closed.

Case II. $t_1 < t_2$: If $k_1 = k_2$, c is closed by the same argument as the case I. And so assume $k_1 \neq k_2$. (1) Suppose $c(t_1) \notin C_{pq}$. Let x_i (i = 1, 2) be points on C_{pq} and $f(C_{pq})$ respectively with $d(p, x_i) = d(p, c(t_i))$. Put $\varepsilon = \min\{d(x_1, c(t_1)), d(x_2, c(t_2))\}$, then there is n such that $\max_{x \in c([0, r])} d(x, f^n(x)) < \varepsilon/5$ by the above $c = \bigcup f^n(c([0, r]))$ and by Lemma 3. Here we can assume that $d(x_1, c(t_1)) < d(x_1, f^n(c(t_1)))$ and $d(x_2, c(t_2)) > d(x_2, f^n(c(t_2)))$ without loss of generality. Since $d(p, c(t_i)) = d(p, f^n(c(t_i)))$ (i = 1, 2) and dim M = 2, the geodesic $c \mid [0, r]$ and $f^n \cdot c \mid [0, r]$ intersect at least two points y_1, y_2 . Thus y_1, y_2 are

joined by two geodesic arcs: one is a part of $c \mid [0, r]$ and the other is a part of $f^n \cdot c \mid [0, r]$. However this is impossible because $c \mid [0, r]$ is a unique minimal geodesic joining c(0) and c(r). (2) Suppose $c(t_1) \in C_{pq}$ (i.e. $c(t_1) = c(0)$), then $c(t_2)$ must be an interior point of c([0, r]) because $k_1 \neq k_2$. Put $\varepsilon = d(x_2, c(t_2))$ then we have a contradiction as same as (1). Thus (1) and (2) imply $k_1 = k_2$ and hence c is closed. The both cases imply c is a closed curve which is not a point curve by our construction. Q.E.D.

References

- [1] Grove, K.: Isometry invariant geodesics. Topology, 13, 281-292 (1974).
- [2] Kurogi, T.: Riemannian manifolds admitting some geodesic. Proc. Japan Acad., 50, 124-126 (1974).
- [3] —: Isometry invariant closed geodesic on a nonpositively curved manifold. Nagoya Math. J., 95, 91-102 (1984).
- [4] Ozols, V.: Critical point of the displacement function of an isometry. J. Diff. Geom., 3, 411-432 (1969).
- [5] Tanaka, M.: On the existence of infinitely many isometry invariant geodesics. ibid., 17, 171-184 (1982).