45. Some Trace Relations of Twisting Operators on the Spaces of Cusp Forms of Half-integral Weight

By Masaru UEDA
Department of Mathematics, Kyoto University
(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1990)

In the papers [3] and [4], we calculated the traces of Hecke operators $\tilde{T}(n^2)$ on the space of cusp forms of half-integral weight $S(k+1/2,N,\chi)$ and on the Kohnen subspace $S(k+1/2,N,\chi)_K$. Moreover we found that the above traces are linear combinations of the traces of certain operators on the spaces S(2k,N') (N' runs over divisors of N/2). In this paper, we report similar trace relations of the twisting operators on the spaces $S(k+1/2,N,\chi)$ and $S(k+1/2,N,\chi)_K$. Details will appear in [5].

Preliminaries. (a) General notations. Let k denote a positive integer. If $z \in C$ and $x \in C$, we put $z^x = \exp(x \cdot \log(z))$ with $\log(z) = \log(|z|) + \sqrt{-1} \arg(z)$, $\arg(z)$ being determined by $-\pi < \arg(z) \le \pi$. Also we put $e(z) = \exp(2\pi \sqrt{-1}z)$.

Let \mathfrak{F} be the complex upper half plane. For a complex-valued function f(z) on \mathfrak{F} , $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(\mathbf{R})$, $\gamma = \begin{pmatrix} u & v \\ w & x \end{pmatrix} \in \Gamma_0(4)$ and $z \in \mathfrak{F}$, we define functions $J(\alpha,z)$, $j(\gamma,z)$ and $f \mid [\alpha]_k(z)$ on \mathfrak{F} by: $J(\alpha,z) = cz + d$, $j(\gamma,z) = \left(\frac{-1}{x}\right)^{-1/2}$ $\left(\frac{w}{x}\right)(wz+x)^{1/2}$ and $f \mid [\alpha]_k(z) = (\det \alpha)^{k/2}J(\alpha,z)^{-k}f(\alpha z)$.

For a real number x, [x] means the greatest integer m with $x \ge m$. $|\cdot|_p$ is the p-adic absolute value which is normalized with $|p|_p = p^{-1}$. See [1, p. 82] for the definition of the Kronecker symbol $\left(\frac{a}{b}\right)$ (a, b) integers with $(a, b) \ne (0, 0)$). Let N be a positive integer and m an integer $\ne 0$. We write $m \mid N^{\infty}$ if every prime factor of m divides N. For a finite-dimensional vector space V over C and a linear operator T on V, $\operatorname{tr}(T \mid V)$ denotes the trace of T on V.

(b) Modular forms of integral weight. Let N be a positive integer. By S(2k, N), we denote the space of all holomorphic cusp forms of weight 2k with the trivial character on the group $\Gamma = \Gamma_0(N)$.

Let $\alpha \in GL_2^+(R)$. If Γ and $\alpha^{-1}\Gamma\alpha$ are commensurable, we define a linear operator $[\Gamma\alpha\Gamma]_{2k}$ on S(2k,N) by: $f|[\Gamma\alpha\Gamma]_{2k}=(\det\alpha)^{k-1}\sum_{\alpha_i}f|[\alpha_i]_{2k}$, where α_i runs over a system of representatives for $\Gamma \setminus \Gamma\alpha\Gamma$. For a natural number n with (n,N)=1, we put $T(n)=T_{2k,N}(n)=\sum_{ad=n}\left[\Gamma\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}\Gamma\right]_{2k}$, where the sum is extended over all pairs of integers (a,d) such that a,d>0, a|d, ad=n. Moreover let Q be a positive divisor of N such that (Q,N/Q)=1 and $Q\neq 1$.

Take an element $\gamma(Q) \in SL_2(Z)$ which satisfies the conditions:

$$\gamma(Q) \equiv
\begin{cases}
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix} & \pmod{Q}; \\
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} & \pmod{N/Q}.
\end{cases}$$

Put $W(Q) = \gamma(Q) \begin{pmatrix} Q & 0 \\ 0 & 1 \end{pmatrix}$. Then W(Q) is a normalizer of Γ and $[W(Q)]_{2k}$ induces a linear operator on S(2k, N).

(c) Modular forms of half-integral weight. Let N be a positive integer divisible by 4 and χ an even character modulo N such that $\chi^2=1$. Put $\mu=\operatorname{ord}_2(N)$, $M=2^{-\mu}N$ and $\Gamma=\Gamma_0(N)$.

Let $\mathfrak{G}(k+1/2)$ be the group consisting of pairs (α, φ) , where $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(R)$ and φ is a holomorphic function on \mathfrak{F} satisfying $\varphi(z) = t(\det \alpha)^{-k/2-1/4}$ $J(\alpha, z)^{k+1/2}$ with $t \in C$ and |t| = 1. The group law is defined by: $(\alpha, \varphi(z)) \cdot (\beta, \psi(z)) = (\alpha\beta, \varphi(\beta z)\psi(z))$. For a complex-valued function f on \mathfrak{F} and $(\alpha, \varphi) \in \mathfrak{G}(k+1/2)$, we define a function $f(\alpha, \varphi)$ on \mathfrak{F} by: $f(\alpha, \varphi)(z) = \varphi(z)^{-1}f(\alpha z)$.

By $\Delta = \Delta_0(N,\chi)_{k+1/2}$, we denote the subgroup of $\mathfrak{G}(k+1/2)$ consisting of all pairs (γ,φ) , where $\binom{a}{c}\binom{b}{d}=\gamma\in\Gamma$ and $\varphi(z)=\chi(d)j(\gamma,z)^{2k+1}$. We denote by $S(k+1/2,N,\chi)$ the space of all complex-valued holomorphic functions f on \mathfrak{S} which satisfy $f\mid \xi=f$ for all $\xi\in\Delta$ and which are holomorphic and vanish at all cusps of Γ . When $\mu=2$, we define the Kohnen subspace $S(k+1/2,N,\chi)_K$ as follows:

$$S\left(k+\frac{1}{2},N,\chi\right)_{K} = \left\{ S\left(k+\frac{1}{2},N,\chi\right) \ni f(z) = \sum_{n=1}^{\infty} a(n)e(nz); \atop a(n)=0 \text{ for } \varepsilon(-1)^{k}n \equiv 2,3 \pmod{4} \right\}.$$

Here, $\varepsilon = \chi_2(-1)$ where χ_2 is the 2-primary component of χ .

Let $\xi \in \mathfrak{G}(k+1/2)$. If Δ and $\xi^{-1}\Delta\xi$ are commensurable, we define a linear operator $[\Delta\xi\Delta]_{k+1/2}$ on $S(k+1/2,N,\mathfrak{X})$ by: $f | [\Delta\xi\Delta]_{k+1/2} = \sum_{\eta} f | \eta$, where η runs over a system of representatives for $\Delta \setminus \Delta\xi\Delta$.

Then for a natural number n with (n, N) = 1, we put

$$\tilde{T}(n^2) = \tilde{T}_{k+1/2,N,\chi}(n^2) = n^{k-3/2} \sum_{ad=n} a \left[\Delta \begin{pmatrix} a^2 & 0 \\ 0 & d^2 \end{pmatrix}, (d/a)^{k+1/2} \right]_{k+1/2}$$

where the sum is extended over all pairs of integers (a, d) such that a, d>0, $a \mid d$ and ad=n. Then $S(k+1/2, N, \chi)_K$ is invariant under the action of the operators $\tilde{T}(n^2)$. Hence, we can consider the traces of those operators on $S(k+1/2, N, \chi)_K$.

From now on until the end of this paper, we assume the following:

Assumption. ψ is a non-trivial primitive character such that $\psi^2=1$ and the conductor of ψ , say L, is odd and $L^2|N$.

We fix the notations L and ψ in the above assumption. Furthermore, we decompose N as follows: $N=L_0L_1$, $L_1=2^{\operatorname{ord}_2(N)}L_2$, where $L_0>0$, $L_1>0$, $L_0\mid L^{\infty}$, and $(L_1,L)=1$. From this assumption and the fact $\chi^2=1$, it follows

that the conductor of χ divides (N/L). From [2, Lemma 3.6], we can consider the linear operator R_{ψ} on $S(k+1/2, N, \lambda)$: $f(z) = \sum_{n=1}^{\infty} a(n)e(nz) \mapsto$ $f|R_{\psi}(z):=\sum_{n=1}^{\infty}\psi(n)a(n)e(nz)$. We call R_{ψ} the twisting operator for ψ .

Statement of results. We use the above notations and also for a prime divisor p of N, $\operatorname{ord}_{p}(N) = \nu_{p} = \nu$ or μ , according as p is odd or p=2. Put M= $2^{-\mu}N$ and $N_0 = \prod_{q \mid L} q^{2\lfloor (\nu-1)/2 \rfloor + 1}$. Moreover we use the following notations:

For any odd prime number p and any integers a, b $(0 \le a \le \nu/2)$, we put

$$\lambda(p,b;a) = \begin{cases} 1, & \text{if } a=0; \\ 1+\left(\frac{-b}{p}\right), & \text{if } 1 \le a \le \left[(\nu-1)/2\right]; \\ \chi_p(-b), & \text{if } \nu \text{ is even and } a=\nu/2, \end{cases}$$

where χ_p is the p-primary component of χ . For any integer b and any square divisor c of M, we put

$$\Lambda(b\,;\,c):=\prod_{p\mid M}\lambda(p,\,b\,;\,\mathrm{ord}_p\,(c)/2).$$

Theorem. Let N be a positive integer such that $2 \le \mu = \operatorname{ord}_2(N) \le 4$, and χ an even character modulo N such that $\chi^2=1$ and the conductor of χ is divisible by 8 if $\mu=4$. Let n be any positive integer such that (n,N)=1. Then we have the following trace relations (1)-(2).

(1) Suppose that $k \ge 2$. Then we have: $\operatorname{tr}(R_{\star}\tilde{T}(n^2)|S(k+1/2,N,\chi))$

$$= \left(\frac{-1}{L}\right)^{k} \chi_{L_{0}}(n) \chi_{L_{1}}(-L) \sum_{N_{1}} \Lambda(Ln; N_{1}) \operatorname{tr}\left([W(N_{0}N_{1})]T(n) \mid S(2k, 2^{\mu-1}N_{0}N_{1}N_{2})\right).$$

(2) Suppose that k>2 and N=4M. Then we have:

$$\operatorname{tr}(R_{\psi}\tilde{T}(n^2)|S(k+1/2,N,\chi)_{K})$$

$$= \left(\frac{-1}{L}\right)^k \chi_{L_0}(n) \chi_{L_1}(-L) \sum_{N_1} \Lambda(Ln; N_1) \operatorname{tr} \left([W(N_0 N_1)] T(n) \, | \, S(2k, N_0 N_1 N_2) \right).$$

Here, N_1 in the sum \sum_{N_1} runs over all square divisors of L_2 and N_2 = $L_2 \prod_{p|N_1} |L_2|_p$. χ_{L_0} (resp. χ_{L_1}) is the L_0 (resp. L_1)-primary component of χ .

Remark. We also have some similar relations for the case of k=1, or $\mu \ge 5$, or etc. (cf. [5] § 4).

Supplementary remarks. In the case of the twisting operator, we have the same phenomena as in the case of the Hecke operators (cf. [3], [4]).

- (1) When the 2-order of $N = \operatorname{ord}_2(N) = \mu$ is small (for example $\mu \leq 3$), cusp forms of half-integral weight k+1/2 of level N correspond to those of integral weight 2k of level N/2.
- (2) On the other hand, when μ is big (for example $\mu \geq 8$), cusp forms of weight k+1/2 of level N correspond to those of weight 2k of level at most N/4.

We do not know why this difference occurs.

References

- [1] T. Miyake: Modular Forms. Springer (1989).
- [2] G. Shimura: On modular forms of half integral weight. Ann. of Math., 97, 440–481 (1973).
- [3] M. Ueda: The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators. J. Math. Kyoto Univ., 28, 505-555 (1988).
- [4] —: Supplement to the decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators (to appear in J. Math. Kyoto Univ.).
- [5] —: The trace formulae of twisting operators on the spaces of cusp forms of half-integral weight and some trace relations (to appear in Japanese J. of Math.).