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In the papers [3] and [4], we calculated the traces of Hecke operators
T(n) on the space of cusp forms of half-integral weight S(k+ 1/2, N, z) and
on the Kohnen subspace S(k+I/2, N,Z). Moreover we found that the
above traces are linear combinations of the traces of certain operators on
the spaces S(2k, N’) (N’ runs over divisors of N/2). In this paper, we
report similar trace relations of the twisting operators on the spaces
S(k+I/2, N,Z) and S(k+I/2, N,Z). Details will appear in [5].

Preliminaries. (a) General notations. Let k denote a positive in-
teger. If z e C and x e C, we put z--exp (x. log (z)) with log (z)-log (I z l)-t-
arg(z), arg(z) being determined by --arg(z)gu. Also we put
e(z)--exp (2u/- 1 z).

Let be the complex upper half plane. For a complex-valued function

f(z) on , =( bd) eGL(R), r=(.uw Vx)e/0(4)andze ), we define func-

tions J(a, z), ]O’, z) and f][a],(z)on ) by" J(a, z)-cz-d, ](, z)=(-)
(-)(wz-x)/ and f [a](z)- (det a)/J(a, z)-f(az).

For a real number x, [x] means the greatest integer m with x_m.
[p is the p-adic absolute value which is normalized with ]p]p--p-. See [1,

82] for the definition of the Kronecker symbol ()(a, b integers withp.

(a, b)=/=(0, 0)). Let N be a positive integer and m an integer =/=0. We write
mlN if every prime actor of m divides N. For a finite-dimensional
vector space V over C and a linear operator T on V, tr (T IV) denotes the
trace of T on V.

(b) Modular forms of integral weight. Let N be a positive integer.
By S(2k, N), we denote the space o all holomorphic cusp orms of weight
2k with the trivial character on the group F=Fo(N).

Let a e GL:(R). If F and a-Fa are commensurable, we define a linear
operator [FaF] on S(2k, N) by" f l[FaF],=(deta)-runs over a system of representatives for F\FF. For a natural number

nwith(n,N)--l, weputT(n)--T,(n)-= [/( )/], where the sum

is extended over all pairs of integers (a, d) such that a, dO, aid, ad---n.
Moreover let Q be a positive divisor of N such that (Q, N/Q)-1 and Q=/= 1.
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Take an element ’(Q) e SL2(Z) which satisfies the conditions"

/(01 --1)0 (modQ);

(Q)--t(10 ) (moaN/Q).

Put W(Q)--7(Q)(Q0 01). Then W(Q)isa normalizer of F and [W(Q)] in-

duces a linear operator on S(2k, N).
(c) Modular forms of half-integral weight. Let N be a positive in-

teger divisible by 4 and Z an even character modulo N such that z- 1. Put
/--ord (N), M----2-N and I-Io(N).

Let (R)(/+ 1/2)be the group consisting o pairs (, ), where =( )e
GL(R) and is a holomorphic unction on 2 satisfying (z)--t(deta)-/-’
J(a, z)// with t e C and ]t I-1. The group law is defined by" (a, (z)).
(fl, (z))-(aft, (flz)(z)). For a complex-valued function f on ) and (a, ) e
(R)(/-t-1/2), we define a function f](a, ) on by’ fl(a, )(z)-(z)-f(z).

By A--rio(N, Z)//, we denote the subgroup of (R)(/-+-1/2) consisting o
all pairs (7, ), where (ca )--" e F and (z)--Z(d)](7, z)/. We denote by

S(k+-l/2, N, Z)the space o all complex-valued holomorphic functions f on

) which satisfy f]-f or all e 1 and which are holomorphic and vanish
at all cusps o F. When/=2, we define the Kohnen subspace S(k-+ 1/2,
N, Z) as f,ll.ows"

S,k(-, (a(n)=O for e(-- 1)n_=2, 3 (mod 4)
Here, e-Z(-1) where Z is the 2-primary component of Z.

Let e(R)(k-+l/2). If zl and -z/ are commensurable, we define a
linear operator [z/z/]// on S(k-+ 1/2, N, Z) by" f] [zlzl]//._-, f]], where

2 runs over a system of representatives for zl\zll.
Then for a natural number n with (n, N)--1, we put

0) )1T(n)= T+z,,(n)=n-m : a z
d

(d/a)’m ++’
where the sum is extended over all pairs of integers (a, d) such that a, d:>0,
aid and ad=n. Then S(k+1/2, N, Z) is invariant under the action of the
operators (n). Hence, we can consider the traces of those operators on

S(k+I/2, N,Z).
From now on until the end of this paper, we assume the following"

Assumption. + is a non-trivial primitive character such that += 1
and the conductor of 4/, say L, is odd and LI N.

We fix the notations L and + in the above assumption. Furthermore,
we decompose N as follows" N=LoL, L=2::L, where L0>0, L>0,

LolL, and (L, L)- 1. From this assumption and the fact z= 1, it follows
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that the conductor of Z divides (N/L). From [2, Lemma 3.6], we can
consider the linear operator
f lR,(z) "= x(n)a(n)e(nz). We call R, the twisting operator for

Statement of results. We use the above notations and also for a prime
divisor p of N, ord (N)=-- or/, according as p is odd or p---2. Put M=
2-,N and No- [-[, q(-’/+. Moreover we use the following notations"

For any odd prime number p and any integers a, b (0<:a_,/2), we
put

2(p,b;)= 1+ --b. i 1<<[(--1)/.];_

k7.(--b), if u is even and =/.,
where Z, is the p-primary component ot Z. For any integer b and any
square divisor e of M, we put

A(b; e) "=

Theorem. Let N be a positive integer such that 2_/=ord(N)_4,
and Z an even character modulo N such that z= 1 and the conductor of z is
divisible by 8 if /-=4. Let n be any positive integer such that (n, N)-1.
Then we have the following trace relations (1)-(2).

(1) Suppose that k_2. Then we have"
tr (R,T(n) lS(kq 1/2, N, Z))

(.-1-)Z0(n)Z(--L) A(Ln; N)tr ([W(NoN)]T(n)IS(2k, 2-NoNN)).

(2) Suppose that tc_2 and N=4M. Then we have"
tr (R,T(n) IS(k+ 1/2, N,

=(- --1)z(n)’(-L)L A(Ln; N)tr ([W(NoN)]T(n)IS(2k, NoNN)).

Here, N1 in the sum , runs over all square divisors of L and N=
L2 Ipi,[L.lp. ZLo (resp.

Remark. We also have some similar relations for the case of k--l,
or/_>5, or etc. (cf. [5] 4).

Supplementary remarks. In the case of the twisting operator, we
have the same phenomena as in the case of the Hecke operators (cf. [3],
[4]).

(1) When the 2-order of N (=ord (N)=/) is small (for example/G3),
cusp forms of half-integral weight k+ 1/2 of level N correspond to those of
integral weight 2k of level N/2.

(2) On the other hand, when/ is big (for example/:>8), cusp forms
of weight k+1/2 of level N correspond to those of weight 2k of level at
most N/4.

We do not know why this difference occurs.
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