37. On Certain Homotopy-homomorphic Elements of $\pi_{n+1}(X)$

By Akira Sasao

Department of Mathematics, School of Science and Engineering, Waseda University

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1990)

§ 0. Introduction. Let X be a topological space with a base point x_0 and let $\Omega(X)$ be the loop space of X at x_0 . We give $\Omega(X)$ the constant loop at x_0 as a base point. As well-known there exists the isomorphism: $\pi_{n+1}(X) \to \pi_n(\Omega X)$. We identify elements of these groups by this isomorphism. Now let a, b be given integers and $\mu \colon S^n \times S^n \to S^n$ be a map of type (a, b), i.e. such that $\mu(x, *)$ and $\mu(*, y)$ are maps $S^n \to S^n$ of degree a and b respectively. We call an element a of a0 of a1 a a1-homomorphic element (or to be a2-homomorphic) if and only if

$$\alpha(\mu(x,y)) = \omega(\alpha(m_a(x)), \alpha(m_b(y)))$$

where ω denotes the usual multiplication in $\Omega(X)$ and m_a is a map: $S^n \to S^n$ of degree a (in fact $m_a(x) = \mu(x, *)$).

In this note our purpose is to find an obstruction for determining to be μ -homomorphic. As a result we prove

Theorem 1. For an element α of $\pi_{n+1}(X)$, α is μ -homomorphic if and only if $\alpha_*(c(\mu))=0$ where $c(\mu)$ denotes the Hopf construction as defined by James ([2]).

An analogous problem has been considered in case of $\pi_3(G)$ for compact connected Lie groups G and (a, b) = (1, 1) by Takahashi ([3]).

Our obstruction defines a correspondence

$$\chi: \pi_n(\Omega(X)) \longrightarrow \pi_{2n}(\Omega(X)).$$

This correspondence χ is not necessarily homomorphic. We prove

Theorem 2. χ is homomorphic if $\Omega(X)$ is a homotopy commutative Hopf space under the usual multiplication.

§ 1. An obstruction. Denote with $\overline{\alpha}$ the adjoint element of $\alpha \in \pi_n(\Omega(X))$, and consider two maps: $S^n \times S^n \to \Omega(X) \times \Omega(X)$ in the following diagram:

$$(1) \begin{array}{cccc} S^{n} \times S^{n} & \longrightarrow & S^{n} \times S^{n} & \longrightarrow & \Omega(X) \times \Omega(X) \\ \mu \Big|_{\mu_{1} \times \mu_{2}} & \mu_{1} \times \mu_{2} & \alpha \times \alpha & \Big|_{\omega} \\ S^{n} & \longrightarrow & \Omega(X) \end{array}$$

where $\mu_1(x) = \mu(x, *)$ and $\mu_2(y) = \mu(*, y)$. These two maps, $\alpha(\mu(x, y))$ and $\omega(\alpha(\mu_1(x)), \alpha(\mu_2(y)))$ coincides with each other on the sub-space $S^n \vee S^n$, so we have the difference element $\chi(\alpha) \in \pi_{2n}(\Omega(X))$ defined by these maps. Since $\Omega(X)$ is a Hopf space we have, from Puppe exact sequence,

Lemma 1. α is μ -homomorphic if and only if $\chi(\alpha)=0$.

Thus it is sufficient for our purpose to describe $\chi(\alpha)$ as stated in

Theorem 1. Let $\iota: S^n \to \Omega(S^{n+1})$ be the inclusion. First we note a decomposition of $\alpha: S^n \to \Omega(S^{n+1}) \to \Omega(X)$,

$$\alpha = (\Omega \overline{\alpha})\iota$$
.

Then from the diagram (1) we obtain the diagram:

$$(2) \qquad S^{n} \times S^{n} \longrightarrow S^{n} \times S^{n} \longrightarrow \Omega(S^{n+1}) \times \Omega(S^{n+1}) \longrightarrow \Omega(X) \times \Omega(X)$$

$$\downarrow^{\mu} \qquad \qquad \downarrow^{\omega} \qquad \qquad \downarrow^{\omega}$$

$$S^{n} \longrightarrow \Omega(S^{n+1}) \longrightarrow \Omega(X)$$

and we have

$$\chi(\alpha) = (\Omega(\overline{\alpha})) \cdot (\chi(\iota))$$

from the naturality of difference elements.

Now we replace the space $\Omega(S^{n+1})$ by the reduced product $S^n(\infty)$ ([1]). Then we obtain the diagram:

$$(4) \qquad \begin{matrix} S^{n} \times S^{n} \longrightarrow S^{n} \times S^{n} \longrightarrow S^{n}(\infty) \times S^{n}(\infty) \\ \downarrow \mu & i & \downarrow q \\ S^{n} & \longrightarrow & S^{n}(\infty) \end{matrix} \qquad \begin{matrix} S^{n} \times S^{n} \longrightarrow S^{n} \times S^{n} \\ \downarrow \mu & \downarrow q \\ S^{n} & \longrightarrow & S^{n}(\infty) \end{matrix}$$

where *i* denotes the inclusion map: $S^n \to S^n(2) \to S^n(\infty)$ and *q* is the identification $(x, *) \equiv (*, x)$.

Lemma 2. In the diagram (4) two maps are given by $(x, y) \longrightarrow [\mu(x, y)]$ and $[\mu(x, *), \mu(*, x)]$.

Then the difference element of these maps, i.e $\chi(i)$ is obtained from the Hopf construction of μ .

Proof. Consider a map between diagrams:

$$S^{n} \times S^{n} \longrightarrow S^{n} \times S^{n} : \mu_{1} \times \mu_{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

In the lower diagram two maps are given by

$$(x, y) \longrightarrow [(x, y)]$$
 and $[(x, *), (*, y)]$.

We denote the difference element of these maps with d(n, n), then the characterization of the Hopf construction by James ([2]) shows that d(n, n) is the universal example of any map from $S^n \times S^n$ to a space and therefore $\mu(\infty) \cdot (d(n, n))$ is the Hopf construction of μ , so the proof is completed.

Now the proof of Theorem 1 easily follows from Lemma 2 and (5).

§ 2. The correspondence χ . Now our obstruction χ defines a correspondence

$$\pi_{n+1}(X) \longrightarrow \pi_{2n+1}(X), \qquad \{\pi_n(\Omega(X)) \longrightarrow \pi_{2n}(\Omega(X))\}.$$

First we prove

Lemma 3. For a map $\mu: S^n \times S^n \to S^n$ of type (a, b) we have

$$\chi(\alpha+\beta)=\chi(\alpha)+\chi(\beta)+ab[\alpha,\beta].$$

where [,] denotes Whitehead product.

Proof. By Theorem 1 we have

$$\chi(\alpha+\beta) = (\alpha+\beta)_*(c(\mu)).$$

Hence, a well-known formula ([4]) gives

$$\chi(\alpha+\beta)=\chi(\alpha)+\chi(\beta)+H(\mu)[\alpha,\beta]$$

where $H(\mu)$ is the Hopf invariant of $c(\mu)$. Then the proof is completed from $H(\mu)=ab$. Therefore we have

Proposition 1. If all Whitehead products vanish in $\pi_*(X)$ then χ is a homomorphism.

Now the proof of Theorem 2 follows from Lemma 3 because the formula of Lemma 3 has the adjoint form in $\pi_*(\Omega(X))$

$$\chi(\alpha+\beta) = \chi(\alpha) + \chi(\beta) + ab\langle\alpha,\beta\rangle$$

where \langle , \rangle denotes Samelson product.

Let μ_1 , μ_2 be two maps of the same type and χ_i be the obstruction for μ_i (i=1,2). We prove

Proposition 2. Our obstruction is determined by the type of μ only, namely $\chi_1 = \chi_2$.

Proof. First we note that there exists a map $f: S^{2n} \to S^n$ such that μ_2 is decomposed as follows:

$$S^n \times S^n \xrightarrow{\phi} (S^n \times S^n) \vee S^{2n} \xrightarrow{1+f} S^n$$

where ϕ denotes a map pinching to the boundary of a small 2n-disk imbedded in $S^n \times S^n$ to a point. By Theorem 1 and the above decomposition we have

$$\chi_{2}(\alpha) = \alpha_{*}(c(\mu_{2})) = \alpha_{*}(\Sigma \mu_{1} + \Sigma f)(\Sigma \phi)(d(n, n))
= \alpha_{*}(\Sigma \mu_{1} + \Sigma f)(d(n, n) + (0)) = \alpha_{*}(\Sigma \mu_{1})(d(n, n)).
= \alpha_{*}(c(\mu_{1})) = \chi_{1}(\alpha).$$

Thus the proof is completed.

§ 4. Examples. If n is even there exists no map of type (a, b) except (a, 0) or (0, a), so we suppose that n is odd in this section. Let $\mu: S^n \times S^n \to S^n$ be a map of type (a, b) (if n=3, 7, a, b are arbitrary and otherwise ab is even), then by Proposition 2 we may assume that

$$c(\mu) = abh_{n+1}$$
 if $n=3,7$
= $ab/2[\iota_{n+1}, \iota_{n+1}]$ otherwise

where h_{n+1} denotes the Hopf map of $\pi_{2n+1}(S^{n+1})$.

(1) $\pi_{n+1}(S^{n+1})$. We identify an element of this group with an integer m through its degree. Since we have

$$m_*(c(\mu)) = abm2h_{n+1}$$
 if $n=3, 7$
= $(ab/2)m2[\iota_{n+1}, \iota_{n+1}]$ otherwise.

We see that an element of $\pi_{n+1}(S^{n+1})$ is μ -homomorphic if and only if it is trivial.

(2) $\pi_{n+1}(S^n)$ $(n \ge 3)$. This group contains only one non-trivial element η_n of order 2. In this case we have

$$m_*(c(\mu)) = ab\eta_n h_{n+1}$$
 if $n=3,7$
= $ab/2[\eta_n, \eta_n]$ otherwise.

Hence we see that if n is 3, 7, η_n is μ -homomorphic if and only if ab is even, otherwise η_n is μ -homomorphic if and only if $ab \equiv 0 \mod 4$ or $ab \equiv 1 \mod 4$ and $[\eta_n, \eta_n] = 0$ (this depends on n).

References

- [1] I. M. James: Reduced product spaces. Ann. of Math., 62, 170-197 (1955).
- [2] —: On the suspension triad. ibid., 63, 191-247 (1956).
- [3] H. Takahashi: Homomorphisms from S^s to compact Lie groups up to homotopy (to appear in Bull. of Nagaoka Univ. of Tech., no. 11 (1990)).
- [4] G. W. Whitehead: Elements of Homotopy Theory. Springer, G.T.M., 61 (1978).