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36. A Note on the Artin Map. II*

By Takashi ONO
Department of Mathematics, The Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1990)

This is a continuation of my preceding paper [2] which will be referred
to as (I) in this paper.? In (I), we defined, for a finite Galois extension
K|k of number fields, a monoid homomorphism (a generalized Artin map)

gy I(K | k)—>CI[G),, G=G(KFk),

where I(K/k) denotes the monoid of nonzero integral ideals a of & whose
prime factors are all unramified in K and C[G], denotes the center of the
group ring C[G]. We, then, obtained a condition for the finiteness of the
image of ag, in terms of characters (I. Theorem). In this paper, we shall
study the kernel of ag,, in a similar way. It will turn out that the structure
of the kernel becomes simpler if the group G becomes away from being
abelian.

§1. Center of G. Let G be a finite group. We shall denote by Irr(G)
the set of all irreducible C-characters of G. For each X € Irr(G), we put

() X(Z)

()= Tk re@.
As is well-known, we have |x*(z)|<1 for all z, .» In this context, it is to
be noted that ‘
1.1 [2*(2)|=1 for all 2, X& G is abelian.
In this paper, we are interested in the following property (Z) of G which
is weaker than (1.1):
Z) There is an =1 in G such that |[x*(x)|=1 for all X € Irr (G).
(1.2) Proposition. G satisfies (Z) &S the center of G is nontrivial.

Proof. For an x e G, let Z(x) be the centralizer of . Our assertion
follows from the following chains of equivalences: « is in the center of
GEG=Z@)8 G =[Z@®P S 2 cme 1) =[Gl = [Z@)] = 2, etne M @[S
[X(x)|=2%(1) for all L&|x*(x)|=1 for all X. Q.E.D.
(1.3) Remark. Any nilpotent group G(s1) satisfies (Z). On the other
hand, let G=H -{z), a semidirect product of an abelian normal subgroup H
of odd (=8) order and a cyclic subgroup {(z) such that zer-'=0¢"', o€ H,
*=1. Then G does not satisfy (Z) as its center is trivial. Such a group G
appears as the Galois group of K/Q where K is the Hilbert class field of a

*  To the memory of Michio Kuga.

1 For example, we mean by (I.2) the item (2) in (I).

D  As for elementary facts on characters, see first three chapters (pp. 1-46) of
I.M.Isaacs, Character Theory of Finite Groups, Academic Press, New York-London,
1976.

8 We denote by [S] the cardinality of a set S.
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quadratic field & of prime discriminant; Artin reciprocity implies that
H=H,, the ideal class group of k. For details of this K/Q, see § 3.

§2. Kernel of ag,. Let K/k be a finite Galois extension of number
fields with the Galois group G=G(K/k), p a prime ideal of k¥ unramified in
K and B be a prime factor of p in K. Denote by [(K/k)/%] the Frobenius

automorphism of 8. We denote by ag,.(v) the element in the center C[G],
of the group ring C[G]:

@.1) aK,k(p)—— N [ Kk ] n=I[K : k.5
By linearity, we obtain a mon01d homomorphism:
2.2) o (K| E)—>CI[G],,

where I(K/k) means the monoid of nonzero integral ideals a such that
(a, dg ;) =1, here 4y, being the relative discriminant of K/k. For a, b in
I(K| k), we shall define an equivalence by

2.3) Q%B@“K/k(a) aK/k(b) 9

Let ¢,, 1Zi<7, 0,=1, be the representatives of conjugate classes of G, B,
be a prime ideal in K such that ¢,=[(K/k)/%,] and p, be the prime ideal in
k below §,. If

2.4 a=[] @, ael(K/k),
is a factorization of a in k, Wepput

(2.5) e, (= > v(a), 1ZiZr.
Since a= [T, p"»® ~ []7-, p5®, we hatve

2.6) @)= [T un(p)* .

Since C[G] is semisimple, there is an isomorphism
ClG]l=C,,®---®C,,
where C,, denotes the ring of all square matrices of order m over C. This
isomorphism induces an isomorphism
2.7 o: ClG]l,= C".
Let w, be the projection of w on the vth factor and %, be the vth irreducible
character of C[G], 1=<y<r.® Then we have

(2.8) LR)=n0,2), n=x1), zeC[Gl.

From (2.1), (2.8), it follows that

(2.9) o(ag(p))=X}(a,), 1=y, iZ7.

Then, from (2.6), (2.9), we have

2.10) o @@ =] B@)®, 1=<v<r.

4=1

Since w in (2.7) is an isomorphism, we have

@.11) @ =1&S ] 1) @ =1, 1<v=r.
i=1

As X¥(o,)=2*()=1 for all 7, v, we obtain from (2.11) the following

9 As for other mode of definition, see (I.1), (1.2).
® In the sequel, we simply use ~~ in place of 7 e
6 We may assume that yx; is the trivial character.
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equivalence which is useful to determine the kernel of a,,:
2.12) an@=1& [ 1@)0=1, 2<v<r.
1=2

In general, let F' be a free commutative monoid with a set of free
generators p’s, M a monoid and f a monoid homomorphism: F—M. We
shall call 1 separable if the following condition holds:

(2.13) fl)=1& f(p)=1 for all p|a.”

(2.14) Theorem. Let K|k be a Galois extension of number fields. If the
Galois group G=G(K k) has no center, then the generalized Artin map o,
8 separable.

Proof. Suppose that ay,(0)=1, aeI(K/k). Then, by (2.12), we have
(2.15) ‘ﬁz L)@ =1, 2<v<r.

Since G has no center, G does not satisfy the condition (Z) by (1.2) and so,
for each 7, 2<i<r, there is a v, 2<v< 7, such that

(2.16) [2F(e)|<1.

Substituting (2.16) in (2.15), we find that all e,(a)=0, 2<i<; in other
words, any prime factor p of a is ~p, and 80 ag,(p)=1 which proves (=) of

(2.13). Conversely, (&) of (2.13) is trivial. Q.E.D.
(2.17) Remark. Since, for a prime ideal p € I(K/k), we have
(2.18) ag(p)=1&p splits completely in K& p=N,%,

we find, when G=G(K/k) has no center, that Ker ax,, is the submonoid of
I(K k) generated by primes which split completely for K/k and that, for
ael(K/k),
2.19) Agp@=1—=a=Ng, A for some ideal ¥ in K.
Here, note that the converse of (2.19) is not true. In fact, choose a prime
p € I(K/k) which does not split completely for K/k and put a=p’=N,B,
f>1. If we had ay,(a)=1, then ag,(p)=1 as ag, is separable by (2.14)
and 80 p=N,, B which contradicts to f>1.
(2.20) Remark. Contrary to (2.19), assume that K/k is abelian. Then
we know that, for a e I(K/k),
(2.21) a=Ng, A for some ideal ¥ in K =—>a,(a)=1.
Again, the converse of (2.21) is not true, except the trivial case where
K=Fk. In fact, let P be a prime ideal in K which is unramified for K/k
such that Ng,B=p’ with f>1. Since K/k is abelian, there is a prime
ideal q in & such that ag,(pq9)=1. As ag(@)=ax,{)!in G=G(K/k), the
Frobenius elements ag,(p) and «g,(q) share the same order f in G; in
other words, we have N,,Q=q’, f>1. If we put a=pq, then we have
ax;(a)=1 but obviously a can not be a norm of an ideal in K because f>1.
8§ 3. Quadratic fields with prime discriminant. Let [#2 be a prime
and k=Q(v1¥), I*=(—1)¢-972], Ag the discriminant 4,=1*=1 mod 4, k is
referred to as a quadratic field of prime discriminant. The ring o, of
integers is given as 0,=Z+Zw, o=(1++/1%)/2, and the norm form ¢, is

" pla means that p appears in the canonical expression of a.
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defined by

3.1 2:(A)=Nyo@+yo)=2*+z2y+((A-1%) /Dy, 2= (z, y).

Let h=h, be the class number of % and ¢ be the fundamental unit of ¥ when
4,>0. By the genus theory, we know that & is odd and N, = —1." Let
K be the Hilbert class field of k. One verifies easily that K/Q is a Galois
extension. The subgroup H of G=G(K/Q) corresponding to k, i.e., H=
G(K|/k), is normal in G and the Artin reciprocity map ay, identifies the
ideal class group H, with H. Let r be any element of G of order 2. As h
is odd, we have - ¢ H and G=H -(z), a semidirect product with H normal.
We claim that

(8.2 ot =07, ogeH.

In fact, since pp*=N,,op~1,” we have zog,(P)r ! =ag,(p)=ag,{H)* and
(8.2) follows from Cebotarev theorem. From (8.2) we see also that G has
no center if h=>3.

K Y
h]:c )
Q P+l

Case 1. h=3. We identify the monoid I(K/Q) with the monoid of
positive integers a, lYa. For pecI(K/Q), i.e., for p=+1, we have
(3.3) x (D) =1<(= p=q,(2) for some z=(x,y) € Z*.
In fact, this follows from the following chain of equivalences:
g 0P =1 &= p splits completely for K/Q <> p splits completely for
k/Q and p, p|p, splits completely for K/k & p=N,,op and ax,(m=1
&= P=Nyqop and p=(x), Ny,qz>0, r=2+yo € 0, & p=q,(2),
z=(x,y) e Z"
Since G(K/Q) has no center, by (2.14) the Artin map is separable and hence
we have, for a € I(K/Q), i.e., for a>0 with l fa,
(8.4 axq(@)=1& q, represents p for all p|a.’®
Case 2. h=1. Wehave K=k and G=(z). If weidentify G with the
group {+1} (canonically), the Artin map a, is nothing but the Kronecker
character X, (a)=(a/l), LYa. Since h=1, we have, for p+l, 2,

P\ _(*\_
(3.5) 2)=(E)-r=0—n
and
(3.6) 1L@2)=1&= I*=1mod 8 & q,—> 2.

If we decompose a as a=2% [] p*» [ q°, with (p/D=1, (¢/D=—1, then we
have

8 As for elementary facts on quadratic fields, see, for example, T.Ono, An In-
troduction to Algebraic Number Theory, New York, 1990.

9 g~1 means that a is a principal ideal.

10 We say that g represents me Z (written: gz—n) if n=qi(®) for some zeZ?2
Needless to say that ax/q(a)=1>qr—a, by (3.4).
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_[(—=1)Ee, I¥*=1mod 8,
3.7 a’”"(a)—{(—l)"’“zec, I*=5mod 8.
The observation above shows that the generalized Artin map has something
to do with the arithmetic of good old days.
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