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1. Introduction. Let J'(R", R™) be the jet space of 1-jets ji(f) of
local maps f of R* to R™. Let {x,, ---, x,} (resp. {w,, - - -, u,}) be the canoni-
cal coordinate system on R" (resp. R™). Then we can introduce the coordi-
nate system {wx,, - -, X, Uy, -+ oy Uy, - -+, DY, - - -} O JH(R", R™) associated with
{x) -+ -2, %y - -+, Uy} given by pi=0ou,/0x,. Let z, (resp. r,) be the usual
projection of J'(R", R™) onto R" (resp. R™). In the following we assume
that n=m=2 and consider a system of differential equations
(E) {Fl(p)zax(x)pHﬁl(w)pi+az(x)p§+ﬁ2(x)p§=0,

Fy(p)=71,(2)pi+ 8,(x)pi+ 1.(x) D3+ 8,(x)p3=0
on J'(R?, R?). Denote by S(E) the set of local solutions of E and set S(E)=
(72(f); fe S(BE) and x ¢ the domain of f} and I(E)={pe J(R*, R»); F.(p)=
Fy(p)=0}. Then, in general, we have I(E)DS(E).

Let us consider the category C of systems of differential equations E
which satisfy the following properties around p, € J'(R? R?):

1 IE)=S(E),

@ det (;‘; §2)¢0 (=1,2),

3 (“2,31—0(1.32)(7’251_r152)(,3152—5251)¢0'
Denote by A(E) the pseudogroup of local transformations ¢ on R® such
that, for any se S(F), if ¢os is defined, then ¢gose S(E). J(E) is called
the automorphism pseudogroup of E. Then, according to [2], for any ele-
ment E ¢ C, we have

Proposition 1.1. The system of defining equations of J(E) around
z,=m(D,) is given by
{8951 [ 0uy = a(x)(0¢, | dus) + 0, | Uy,
06,/ 0u, = b(x) (¢, / ou,)
where ¢=(¢1, ¢2) e A(E) and a(x)=(.8152_ﬁzax)—l(ﬁlrz"azax+“152—,3271), b(x)=
(.3152 - ,3251)_1(0@7’1 - Ofxrzz-

We set C={F e (C; a(x) and b(x) are constant}. The purpose of this
note is to classify systems of differential equations belonging to C from
the geometrical viewpoint using the couple of real numbers (@, b) which is
called the structure vector of E ¢ (.

2. Preliminary lemma. Let us consider the 4-dimensional Euclidean
space R' with the canonical coordinate system {v, v,, v;, v,} and a vector
field W=(av,+v,)(0/3v,) + bv,(3/0v,) + (av, +v,)(3/ 0v,) + bv,(3/0v,) where a and
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b are arbitrary real constants. Denote by P°® the 3-dimensional real pro-
jective space and let « be the canonical projection of R*—{0} onto P*.

Lemma 2.1. To the vector field W on R*, there corresponds a vector
field X on P* such that, for any p € R*—{0}, we have n (W) =X, where p=
(D).

The proof is easily done by using the inhomogeneous coordinate
system.

3. Statement of results. For any local transformation ¢ on R*, we
define the lift ¢ of ¢ to J'(R? R*) by ¢V (N))=7i(pe f). Then we can
define the pseudogroup A(E)® on J'(R? R* which is generated by {¢V; ¢ e
J(E)}. Similarly we can define the lift X® to J'(R? R? of any local vector
field X on R%. A vector field X is called an _J(&)-vector field if the local
l-parameter group of local transformations ¢, generated by X is included
in A(E). Denote by _L(E) the sheaf on R? of germs of local J(E)-vector
fields. Then we can define the sheaf _L(E)® on JYR?, R? of germs of vector
fields X where X is any local cross-section of _L ().

A function f defined around p e J'(R% R? is called a differential in-
variant of A(E) if Z f=0 for any Z ¢ L(E){’ which is the stalk of _L(E)®
on p.

Proposition 3.1. Let E ¢ C with the structure vector (a,b). Then a
function f given around p € J'(R? R® is a differential invariant of AE) if
and only if f satisfies the following relations around p:

WE(f)=(api+pD@f/opD) + bpi@f/opd)
+ (apz:+p) @]y + bp:@f/ 0p) =0,
Z(f)=pi@f/apD) + pi@f]opd + 0y 9p) + 2@/ opD) =0,
of/ou,=0, of/ou,=0.

As for the proof, see [2, Proposition 6.2].

W?* and Z are considered as vector fields on Ji,={p € J*(R? R ; m(p)=w,
m(p)=2}=R* and we can prove that 7,(Z)=0 and by Lemma 2.1 we have
the vector field XZ=r, (W?%) on P®. XZ is called the characteristic vector
field of E e C.

Proposition 3.2. Assume that b+0. Then X% admits a singular
point if and only if a®*+4b=0.

This is proved by the local expression of X?Z.

Let E be an element in C with the structure vector (a, b), b+0. Denote
by PZ the set of nonsingular points of X*. Then PZ? is open and dense in
P:. If a*+4b<0, then by Proposition 3.2 we have P¥=P*. The vector
field X# gives a foliation &% on P? such that any leaf of &” is an integral
curve of XZ ([1]).

Definition 3.1. Let & be a foliation of codim ¢ on a manifold M
given by the following transverse structure ({(U., 1.}, {V.}, {RZ) where

i) {U,} is an open covering of M,
i) f,: U,—~R¢is a submersion,
iii) f.=7V.ofsonU,NU,; wherer,,: R=—R%are local diffeomorphisms.
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& is called an algebraic foliation if each 7,, is a rational map i.e. there

exist polynomials ri,(z,, - - -, ) (=1, - - -, @) and siy(x, ---,2,) (=1, ---, Q)
such that s/,(x,, - - -, )0 for any j and any (z,, ---, x,) € f(U,N U, and
that ri,=ri,/si, where 7,,= (% < - -, 7%,

Let (a(E), b(E)) denote the structure vector of Fec (. We set O'=
{EeC; b(E)+0}, C,={Ee(C; a(E)+4b(E)>0}, Ci={E e’ ; a(E)*+4b(E)
=0} and C.={F e (C’; «(E)*+4b(E)<0}. Then our main results are

Theorem 3.3. Let Ec(’. Then the foliation F* on PF is an alge-
braie foliation.

Theorem 3.4. FE e’ is elliptic if and only if Ee(C..

Theorem 3.5. Let E, and E, be in C’. Then the foliation F** on P*
is isomorphic to the foliation F% on PF: if and only if both E, and E, be-
long to the same one of the three classes C’., Cy and C’..

4. Proof of Theorem 3.3. For U,={pe R*—{0}; v,(p)#0}, let {z, v, 2}
be the coordinate system on U,==(U,)CP* associated with {v1, Voy Vs, Vi)
We choose a point p, e U, satisfying (#*+ax—0)(p,)#0. Then p,e P* be-
cause it is proved that X7 is written on U, by X¥=(—a’—ax+0)(@/02)+
—2y)(@/0y) +(—x2z—az+by)3/52). We set U={pePENU,; (x*+ax—D>)
(p)#0}. Then, by setting I{*=(xy—2)/(@*+ax—b) and J¢*=(az+xz—by)/
(x*+ax—Db), the map f,: U,—R® defined by fi(p)=T¥ (D), J¢(p)) is a sub-
mersion. Note that z*(I?) and z*(J#) are differential invariants of A(K).
If p e U, N PZ satisfies (x’+ax—0)(p) =0, then it is proved that (z —2y)(p) 0.
By setting [%=(zy—=7) H(@y—2)+ @ +ax—D)} and Jo =(az+xz—by)/{(xy
—2)+(@*+ax—Db)}, the map flp: lAflp—>R2 defined on a neighborhood ﬁlp of p
by flp(q) d @(q), J2(q)) is a submersion. Thus we get an open covering
{Ui, U“,, peU\U,i=1,2,8,4} of P* and submersions f,: U,—~R* and f”,
U »—>R*. It is proved that we have

9 =19 (b —alpJ e — (T2,

JP=—(aIP+J ) [{bU ) —alP T — ()},

Igo—Jov, JP=_—ql_—Jw,
By contlnulng these arguments, it is proved that we get the sets {(U,,.f),
(Uip fin); 15154, pe U,\U} and {r”, Tim Tinsas 1<, y<4 peU\NU, qe

U\U )} such that f,=7,,0f,, fi=T,of,, and fi,=7.,, °qu where 7, 7,, and

Tipje are rational maps and that they give an algebraic foliation on P*
which is just the foliation ¥#. This is the outline of the proof.

5. Proof of Theorem 3.4. F is said to be elliptic if, for any (¢, ¢,)
e R*—{0}, the matrix ¢,M,+t,M, M,= (?Z gz), is nonsingular. Since
det (¢, M, + t,M,) = (a,0, '—1317'1)15% + (o0, + azal_ﬁlrz_—ﬁ2rl)tlt2 + (azaz—ﬁzrz)tg, we
see that E is elliptic if and only if (a8, + a6, — Bi¥a— Ba¥D)* — 4(et,6, — Bil) (@0, —
B =(Bi6,— B:0)*(@*+4b)<0. This proves Theorem 3.4 because E e C'C(C
means f,0,— P.0; 0.

6. Proof of Theorem 3.5. It is easy to prove that, if &*: is isomor-
phic to %2, then both E, and E, belong to the same class. Conversely
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we assume that they are in the same class. If we can find a linear trans-
formation ¢ on R* satisfying ¢,(W)=2aW,+0¢Z for some real numbers 1 and
g, then ¢ induces an isomorphism of %% to F*. In particular, it is suffi-
cient to find ¢=(ci),.;, <. sSuch that ci=0 for 1<i<2, 3<7<4 and for 3<
1<4, 1<7<2 and that
(6.1), {c’,ﬁa1+c’,§+lb1=2(azc£+c’,ﬁ“)+ac,’§, it =2D,ck,  +acktl,

citla 4+ ciiib =2byci Facitt, i =2auch i) +ock,, (B=1,3)
for some real numbers 2 and .

We choose real numbers « and g satisfying 2«—pa,+#0 and o —a,ap—
b,f*+0 and set 4,=2«a—pa,, A,=aa,+280, and B= —a*+a,af+b,f’. Let us
consider the algebraic equation with respect to
(6.2) (a3 +4b)A B+ (ai+4b)a,A°Bs+a3A*B*— b,B=0.

Then, under the condition a?-+4b,-0, (6.2) admits a real solution ¢ if and
only if (aj+4b)(a3+40,)=0. We set r=A'(6A,+a,B). Then «, ,7 and §
satisfy

6.3) Ar—Ap=a,B, a76+b,0"—71"=—0,B, adi—pr+0.

If a?44b,=0ai+4b,=0, (6.2) holds identically and we can choose 7 and §
such that «, g, 7 and & satisfy (6.3).

Now we set r=—B/(ad—pr), 0= (a,B+ ada,+ péb,—ar) [ (@6—pr). Then,
by (6.3), we get (—1*+7da,+6%,) /(a6 — pr)b,=2 and (a7 — pra,— pod,) | (ad— 1)
=¢. If wesetci=a, cf,,=p, ci*'=7 and cfi1=4d, then 2 and ¢ satisfy (6.1),.
This is the outline of the proof.
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