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This is continued from [1].

2. To prove Theorem 1 we need three lemmas.

Lemma 1. Let a function f satisfy the right Lipschitz condition on
R with constant L, and let 4 be a closed interval. Set d=| f||/2L, where
| fl| denotes the supremum mnorm of f on 4. Then there exists a real
number a such that either

(5) fx+a)=L(x+d) for all <o
or
(6) Sa+a)<L(x—0d) for all x> —ao.

Proof. By the assumption, it follows that f is a function of bounded
variation on every closed interval. Hence, both limit values f(x+) and
f(x—) exist for every x € R. Moreover, we have
(7) fer)2f@=f(x—) for all x e R.

Indeed, since ; satisfies the right Lipschitz condition with constant L, we
have

Sa+t)—Lt< f@)=fl@—t)+ Lt
for all x ¢ R and t>>0. Passing to the limit in these inequalities as t—0-
we obtain (7).

Let us consider f on the closed interval 4. Then from (7), it follows
that there exists a point b € 4 such that either || f||=f(b—) or || f||=— f(b+).
Now set

_[b—=d if|fl=S(—),
(8) S M A i
We shall prove that the real number o defined by (8) satisfies the require-
ment of the lemma.

Suppose first that || f||=/(b—). Then from the definition of 4, we
conclude that f(b—)=2L5. Now choose two real numbers y and ¢ with
y<t<b. Since f satisfies the right Lipschitz condition on R with constant
L,

Sz ft)—LEt—y).
Passing to the limit in this inequality as t—b— we obtain
(9) SW=fO—)—L(b—y)=2L5—L(b—y).
Now let £<6. Then (8) implies that x+a<b. Hence, we can apply (9)
with y=x+a. Thus, we arrive at
f@+a)=2L5—L(b—a—x)=2Lé— L(§—x)=L(x+9),
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and so, in the considered case, (5) holds.
In the case || f||=—f(b+), it can be proved in a similar way that (6)
holds. Therefore, in any case, we either have (5) or (6). Q.E.D.
In what follows, for an integrable function s on [0,1] and a positive
integer m, we denote by I,.(f) the mth Fejér integral of f, i.e.,

(10) L(f; = J f@F, (xt—t)dz  forall teR,
where

_ 1 7n‘l — 2rih
an Fuw=—1 3% n+1-he

is the mth Fejér kernel. We recall that F',, is a nonnegative even function
with j:’z F(x)dz=1/2.

Lemma 2. Let a function f be as in Theorem 1. Then there existsa
real number a such that the inequality
(12) | fII<2L/(m+1)+2|1,(f ; a)|
holds for any positive integer m.

Proof. We may assume that f satisfies a right Lipschitz condition
since the other case follows immediately from this case (replacing f by — f).
Set 6= f||/2L (| f|| is the supremum norm of f on the closed interval 4=
[0,1]). Now extend j on R with period 1. It is easy to prove that the
extended function f satisfies the right Lipschitz condition on the whole real
line R with constant L. Then according to Lemma 1 there exists a real
number a such that either (5) or (6) holds. Further we assume that (5)
holds. The other alternative can be treated in a similar way.

Now let m be a given positive integer. We are going to prove (12).
We can suppose that || f||=2L/(m+1) since otherwise there is nothing to
prove. From the last inequality and the definition of 4, we conclude that
6=1/(m+1). Because of the periodicity of f and F,, we can write the
Fejér integral I,(f; @) in the form

1/2
(13) LUs=[" fe+aF.@ds.
For the value of § there are two possible cases:
1/m+1)<6<1/2 or 6>1/2.

Suppose first that 1/(m+1)<6<1/2. It is known (see [2: Lemma 1])

that in this case,

(14) j"z Fo(2)dz <1/66(m+1).
8

From (13), it follows that

(15) L(f;a)=1+1,+1,

where I, I, and I, denote the integrals of the function f(x+a)F,(x) on the
intervals [—4d, 6], [—1/2, —4] and [, 1/2], respectively. Using (5) and the
above mentioned properties of the Fejér kernel we deduce the estimate

(16) I,>L j @+ 8)F, (@)do=2Ls j: F. (2)dx
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—Lo—2Ls f " P (@)da
8

—| fl/2—2Ls ﬁ’z F, (x)da.

Analogously, using the obvious inequality f(x+a)= —| f|| which holds for
all x € R, we deduce

an Lz—1/1 | Fu@de=—2L [ Fu@da
and

172 172
(18) L=~/ j F,(@)dx=—2L3 j " F@de.

From (15), (16), (17) and (18), it follows that
1/2
L/ 0z /1/2-6L3 [ Fu@ida.

Combining this inequality with (14) we get

which implies (12).

Now suppose that 6>>1/2. Then from (13), (5) and the above mentioned
properties of the Fejér kernel, we obtain

Lozl | @oF.@ds

1/2
=2L [ Fo@de=| /12,
0
which again implies (12). Q.E.D.
Lemma 3. Let a function f satisfy the one-sided Lipschitz condition
on [0, 1] with constant L. Suppose also that
1
FO=r1) and I F@)dx=0.
0

Then for any positive integer m, we have

. 2L 2 & (1 1 > A
19 e A —— h)\.
(19) i< i + - h}; h I |f ()]
Proof. Choose a positive integer m. Using (11) and taking into

account that jl S(x)dx=0 we can write the Fejér integral (10) in the form
0
1 & ’m+1—"lh| A ~2niht
20 L(fit)=——m S MTI7I Fp)e-rrine
(20) (S5 0) o h;_m Db J(n)
where the prime in the sum indicates that #=0 is excluded from the range
of summation. From (20), it follows that

1 1 1 ; l
21 M — ——

h=1

holds for each t ¢ R. From (21) and Lemma 2, we get (19). Q.E.D.

Proof of Theorem 1. Let f satisfy the assumption of Theorem 1.
Then the function f* defined on [0, 1] by

rr@=r@-| ' rat
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satisfies the assumption of Lemma 3. Applying Lemma 3 to the function
F* and taking into account the relations [f*]<2| f*||, [f*]=[f] and f*=1,
we get (4). Q.E.D.
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