70. On Complexes in a Finite Abelian Group. I

By Tamás Szőnyi* and Ferenc Wettl**)

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1988)

Let G be a finite abelian group, written additively, which will be fixed throughout this paper. We shall consider *complexes*, i.e. nonempty subsets of G. For $g \in G$ and two complexes A, B, we shall write

$$A+g = \{a+g \mid a \in A\},\$$

 $A+B = \{a+b \mid a \in A, b \in B\},\$
 $A \circ B = \{a+b \mid a \in A, b \in B, a \neq b\}.$

We were led to this latter operation • in our geometric research [2] (see also [1]) on ovals in a finite projective plane, in which some of the results of the present paper were needed.

For a complex K, we shall write |K|=k, $|K \circ K|=m$. The object of this paper is to prove the following three theorems.

Theorem 1. If k=m>4 for a complex K, then one of the two statements holds:

- (i) K is a coset of a subgroup of G.
- (ii) There exists an element g of G such that K+g has only involutions and $(K+g) \cup \{0\}$ is a subgroup of G.

Theorem 2. If $K+K=K\circ K$, then one of the two statements holds:

- (i) $K+K=K\circ K$ is a coset of a subgroup of G.
- (ii) $m \ge \frac{3}{2}k$.

Theorem 3. If |G| is odd and $K+K\neq K\circ K$, then

$$m \! \geq \! \frac{k \! - \! 3 \! - \! \sqrt{5k^2 \! - \! 10k \! + \! 9}}{2} \! = \! \frac{\sqrt{5} + \! 1}{2} k \! - \! \frac{\sqrt{5} + \! 3}{2} \! + \! 0 \! \Big(\frac{1}{k} \Big).$$

Let us begin with

Lemma 1. K is a coset of a subgroup of G if and only if k=|K+K|.

Proof. The only if part is obvious. Suppose now k=|K+K|. Let $a \in K$ and put K-a=H. Then clearly $0 \in H$, |H|=k and |H+H|=|K+K| = |H| and |H-H|+H| which implies |H-H|+H|. Thus |H| is a subgroup of |G| and |K| is a coset of |H|.

Corollary. If k=m and $K \circ K=K+K$, then K is a coset of a subgroup of G.

This corollary allows us to reformulate our Theorem 1 into the following form.

Theorem 1'. Suppose $K+K\neq K\circ K$ and k=m>4. Then (ii) of Theo-

^{*)} Computer and Automation Institute, Hungarian Academy of Sciences.

^{**} Mathematical Department of Technical University, Budapest, Faculty of Transportation Engineering.

rem 1 holds.

This can be again reformulated as follows.

When $K+K\neq K\circ K$, K has an element a such that 2a can not be written as b+c, b, $c\in K$, $b\neq c$. Take such $a\in K$ and put K'=K-a. Then $0\in K'$, $0\notin K'\circ K'$, |K'|=k, $|K'\circ K'|=m$. Rewriting K for K', we see that the proof of Theorem 1' can be reduced to that of

Theorem 1". Suppose

$$(0)$$
 $0 \in K \quad but \quad 0 \notin K \circ K.$

If k=m>4, then $K\setminus\{0\}$ consists of involutions and there is an involution g of G such that $(K+g)\cup\{0\}$ becomes a subgroup of G.

In the following (until the end of the proof of this theorem except in the corollary to Lemma 3) we suppose always that our K satisfies (0). We introduce the following notations (for such K):

We put for $x \in K$, $x \neq 0$,

$$K_r = x + (K \setminus \{0, x\})$$

and for $u \in G$

$$K^u = \{x \in K \mid u \in K_x\}.$$

 K^u consists of those elements of K for which u=x+y has a solution with $x, y \in K, y \neq 0, x \neq y$. Obviously we have

$$0, x \in K_x \cup K^x, |K_x| = k-2$$

and hence

$$|K_x \cap K| \ge (k-2) - (m-k+1) = 2k-3-m$$
.

Lemma 2. Suppose that K (satisfying (0)) has no involution and $m \ge k$. Then $|K^u| \le m - k + 1$ for $u \ne 0 \in K$.

Proof. We have $K^u \cap K_u = \emptyset$, because from $x \in K^u \cap K_u$ would follow $u-x \in K$ (since $x \in K_u$) and $x-u \in K$ (since $x \in K^u$). Since K has no involution, $x-u \neq u-x$, but $0=(x-u)+(u-x)\in K\circ K$ in contradiction to (0). As $K^u \cup K_u \subset (K\circ K)\setminus \{u\}$, we obtain $m-1 \geq |K^u \cup K_u| + |K^u \cap K_u| = |K^u| + |K_u| = |K^u| + (k-2)$, whence conclusion.

Lemma 3. If K (satisfying (0)) contains no involution, then $m \ge (3/2)k-2$.

Proof. We count $N=|\{(u,K_x)|u\in K_x\}|$ in two different ways. In counting first x and then $u\in K_x$, we see N=(k-1)(k-2). If one counts first u and then x with $u\in K_x$, one obtains

$$\begin{array}{l} N \! = \! \sum\limits_{u \in K \circ K} |K^u| \! = \! \sum\limits_{u \in (K \circ K) \cap K} |K^u| \! + \! \sum\limits_{u \in (K \circ K) \setminus K} |K^u| \\ \leq \! (k \! - \! 1)(m \! - \! k \! + \! 1) \! + \! (m \! - \! k \! + \! 1)(k \! - \! 1) \end{array}$$

in virtue of Lemma 2, as $|(K \circ K) \cap K| = k-1$, $|K^u| \le m-k+1$, $|(K \circ K) \setminus K| = m-k+1$, $|K^u| \le k-1$, whence conclusion.

Corollary. If K contains no involution and k=m>4, then $K \circ K=K+K$, so that (in virtue of Corollary to Lemma 1) K is a coset of a subgroup of G.

Remark. The following example shows that the number 4 in the above corollary can not be replaced by a smaller number. In this example,

we have k=m=4, K contains no involution and is not a coset of any subgroup of $G: G=\mathbb{Z}/12\mathbb{Z}, K=\{1, 5, 7, 11\}, K \circ K=\{0, 4, 6, 8\}.$

Proof of Theorem 1". We suppose that K satisfies (0) (so that $K \circ K \neq K+K$) and m=k>4. Put $K\setminus\{0\}=L$. As $K\ni 0$, we have $K\circ K\supset L$ and since m=k, $(K\circ K)\setminus L$ consists of just one element, denoted w, and from $x,y\in K, x\neq y$ follows $x+y\in L\subset K$ or x+y=w, an argument which will be repeatedly used in the following.

By the above corollary, K contains an involution, denoted $a \ (\neq 0)$. Put $I_K = \{x \in K \mid 2x = 0\}$. We have $K \supset I_K \supset \{0, a\}$. Now we shall prove $K = I_K$ in showing that $K \setminus I_K \neq \emptyset$ leads to a contradiction.

An element x of $K \setminus I_K$ will be called *improper* if $a+x \in K$ and either 2x or $a+2x \in K$. We shall show that an improper element should exist, if $K \setminus I_K \neq \emptyset$.

Let x be any element of $K \setminus I_K$. Then $x \in K$ and $2x \neq 0$. We have $a \in K$ and 2a = 0, so that $a \neq x$. If $a + x \in K$ and $a + 2x \neq w$, then x is improper, because $a + 2x = (a + x) + x \in K$ since x, $a + x \in K$ and $x \neq a + x$.

Suppose $a+x\in K$ but a+2x=w. Then x is still improper, if $2x\in K$. Suppose therefore $2x\notin K$. As $k\geq 5$, $K\setminus\{0,a,x,a+x\}\neq\varnothing$ and we can take an element $y\in K\setminus\{0,a,x,a+x\}$. Then $x,y\in K,x\neq y$, and $x+y\neq a+2x=w$ (because $y\neq a+x$) so that $x+y\in L\subset K$ and $a+(x+y)=(a+x)+y\in K$ as $a+x,y\in K,a+x\neq y$, and $a+(x+y)\neq a+2x=w$ (because $x\neq y$). We have furthermore $2x+y=x+(x+y)\in K$ as $x,x+y\in K,x\neq x+y$ (because $y\neq 0$) and $2x+y\neq a+2x=w$ (because $y\neq a$), and $2(x+y)=(2x+y)+y\in K\circ K$ as $2x+y,y\in K,2x+y\neq y$ (because $2x\neq 0$). We have also $a+2(x+y)=(a+x+y)+(x+y)\in K\circ K$ as $a+x+y,x+y\in K$ and $a+x+y\neq x+y$. Thus both 2(x+y) and $a+2(x+y)\in K\circ K$. As these are different elements, one of them should be in K, and x+y is improper. The existence of an improper element is thus shown in case $a+x\in K$.

Suppose now a+x=w. As $k\geq 5$, we can take an element y of $K\setminus\{0,a,x\}$. Then $a,y\in K$ and $a+y\neq a+x=w$. Therefore $a+y\in L\subset K$. If 2y=x, we have $0\neq 2y\in K$ and y is improper. If $2y\neq x$, then $a+2y\neq a+x=w$ and $a+2y=(a+y)+y\in K\circ K$, so that $a+2y\in L\subset K$. Thus y is improper if $2y\neq 0$. In case 2y=0, put z=x+y. We have $x,y\in K,x\neq y$ and $x+y\neq a+x=w$, therefore $z\in L\subset K$. Furthermore $2z=2x\neq 0$ and $a+z=a+(x+y)\in L\subset K$ as $a,x+y\in K$ and $(a+x)+y\neq a+x=w$, and $a+2z=(a+z)+z\in L\subset K$ as $a+z,z\in K$, $a+z\neq z$ and $a+2z=a+2x\neq a+x=w$. Thus z is improper, and we have shown the existence of an improper element in all cases.

Now let j be any natural number, and consider the following three properties of an improper element x:

 A_j : $jx \neq 0$ and $a+jx \neq 0$,

 $B_j: jx \in K \text{ or } a+jx \in K$,

 C_j : $jx \in K \circ K$ and $a+jx \in K \circ K$.

It is clear that C_j implies A_j and B_j . We see that C_{j+2} follows from A_j

and B_{j+1} . In fact

$$(j+2)x = x + (j+1)x = (a+x) + \{a + (j+1)x\} \in K \circ K$$

because $x \neq (j+1)x$, $a+x \neq a+(j+1)x$ in virtue of A_j , and x, $(j+1)x \in K$ or (a+x), $a+(j+1)x \in K$ in virtue of B_{j+1} and the improperness of x,

$$a+(j+2)x=(a+x)+(j+1)x=x+\{a+(j+1)x\}\in K\circ K$$

holds for the same reason.

It is easy to see that A_j , B_j hold for j=1,2 for any improper element x, whence C_3 , C_4 , \cdots and A_3 , A_4 , \cdots should follow which implies a contradiction because A_n can not hold if n is the order of x. Thus we have proved $K=I_K$. We see also that w is an involution because w=u+v, u, $v \in I_K$.

To complete the proof of our theorem, put $H = (K+w) \cup \{0\}$ and let us show that H is a subgroup of G. Using $K = I_K$, it is easily seen that $K+w = L \cup \{w\} = K \circ K$. Let $x, y \in H$. If x or y = 0 or x = y, it is clear that $x + y \in H$. Otherwise we can write $x = x_0 + w$, $y = y_0 + w$, x_0 , $y_0 \in K$, $x_0 \neq y_0$. Then $x + y = x_0 + y_0 \in K \circ K \subset H$, which shows that H is closed under addition.

(to be continued.)

References

- [1] G. Korchmáros: Una generalizzazione del teorema di F. Buekenhout sulle ovali pascaliane. Boll. U. M. I., (5) 18-B, pp. 673-687 (1981).
- [2] F. Wettl: On the nuclei of a point set of a finite projective plane. Journal of Geometry, 30, 157-163 (1987).