
No. 7] Proc. Japan Acad., 64, Ser. A (1988) 245

70. On Complexes in a Finite Abelian Group. I

By Tamtis SZNYI*) and Ferenc WETTLTM

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1988)

Let G be a finite abelian group, written additively, which will be fixed
throughout this paper. We shall consider complexes, i.e. nonempty sub-
sets of G. For g e G and two complexes A, B, we shall write

A+g={a+glaeA},
A+B={a+blaeA, b eB},
A B={a+blaeA b eB, a:b).

We were led to this latter operation in our geometric research [2]
(see also [1]) on ovals in a finite projective plane, in which some of the
results o the present paper were needed.

For a complex K, we shall write [KI= k, IK Kl=m. The object of this
paper is to prove the following three theorems.

Theorem 1. If k=m4 for a complex K, then one of the two state-
ments holds"

( ) K is a coset of a subgroup of G.
(ii) There exists an element g of G such that K+g has only invo-

lutions and (K+g)U {0} is a subgroup of G.
Theorem 2. If Kq-K=K K, then one of the two statements holds"
( ) K+K=KoK is a coset of a subgroup of G.

(ii) m>3--k.
--2

Theorem 3. If IG[ is odd and Kq-K=/=Ko K, then
k-3--/5k--10k+9 J-+l k--

j5 +3 +0(__1.m
2 2 2 \k/

Let us begin with
Lemma 1. K is a coset of a subgroup of G if and only if
Proof. The only if part is obvious. Suppose now k=]K+KI. Let

a eK and put K--a=H. Then clearly 0 e H, IHl=k and IH+HI=IK+KI
=IHI and HcH+H which implies H=H+H. Thus H is a subgroup of G
and K is a coset of H.

Corollary. If k=m and K K=K+K, then K is a coset of a subgroup

o G.
This corollary allows us to reformulate our Theorem 1 into the ollow-

ing orm.
Theorem 1’. Suppose K+K:/:KoK and k=m4. Then (ii) of Theo-
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rem 1 holds.
This can be again reformulated as follows.
When K-K=/=Ko K, K has an element a such that 2a can not be

written as b-c, b, c e K, bg=c. Take such a e K and put K’--K-a. Then
0 e K’, 0 e K’ K’, IK’I-k, IK’ K’i--m. Rewriting K for K’, we see that
the proof of Theorem 1’ can be reduced to that of

Theorem 1. Suppose
(0) OeK but OeKoK.

If k--m4, then K\(O} consists of involutions and there is an involution g

of G such that (K-g) (0} becomes a subgroup of G.
In the ollowing (until the end o the proof o this theorem except in

the corollary to Lemma 3) we suppose always that our K satisfies (0). We
introduce the ollowing notations (for such K)"

We put or x e K, x=/=0,
K--x-(g\(O, x})

and or u e G
g={x e glu e g}.

K consists of those elements o K cr which u--x+y has a solution with
x, y e K, y=/=O, x=/=y. Obviously we have

O, x eKK, IK]=k-2
and hence

IKK]_(k- 2)- (m- k+ 1)-- 2k-. 3-- m.
Lemma 2. Suppose that K (satisfying (0)) has no involution and m k.

Then IKl_m-k-I for u(=/=O) eK.
Proof. We have K f K---- , because rom x e K fK would follow

u-- x e K (since x e K) and x-u e K (since x e K). Since K has no invo-
lution, x--u=/=u--x, but O-(x--u)-(u--x)eKoK in contradiction to (0).
As KUKc(KoK)\(u}, we obtain
=]Kl+(k--2), whence conclusion.

Lemma :. If K (satisfying (0)) contains no involution, then m_
(3/2)k--2.

Proof. We count N=l((u,K)]u e K}l in two different ways. In
counting first x and then u e K, we see N-(k-1)(k-2). I one counts
first u and then x with u e K, one obtains

N-- Z IKul Z IKul/
ueKoK u (K.K) K u (KoK)\K

< (k-- 1) (m-- k+)+(m--
in virtue o Lemma 2, as I(KoK)K[=k--1,
m-- k- 1, IK I<_ k-- 1, whence conclusion.

Corollary. If K contains no involution and k--m4, then K oK--
KA-K, so that (in virtue of Corollary to Lemma 1) K is a coset of a subgroup
of G.

Remark. The following example shows that the number 4 in the
above corollary can not be replaced by a smaller number. In this example,
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we have k=m=4, K contains no involution and is not a coset of any sub-
group of G" G=Z/12Z, K={1, 5, 7, 11}, K K={0, 4, 6, 8}.

Proof of Theorem 1". We suppose that K satisfies (0) (so that Ko K
:/:K+K) and m=k4. Put K\{0}=L. As K 0, we have KoKL and
since re=k, (KoK)\L consists of just one element, denoted w, and rom
x, y e K, x:/:y ollows x/y e LcK or x+y=w, an argument which will be
repeatedly used in the ollowing.

By the above corollary, K contains an involution, denoted a (:/:0).
Put I=[xeKI2x=O}. We have KI[O,a}. Now we shall prove K=
I in showing that K\I:/: leads to a contradiction.

An element x o K\I will be called improper i a/x e K and either
2x or a/2x K. We shall show that an improper element should exist, if

K\I=/== .
Let x be any element of K\I:. Then x e K and 2x=/=0. We have a e K

and 2a=0, so that a=/=x. If a/x e K and a+2x=/:w, then x is improper,
because a/2x=(a+x)+x e K since x, a/x e K and x=/=a+x.

Suppose a/x e K but a/2x=w. Then x is still improper, if 2x e K.
Suppose therefore 2x e K. As k_5, K\{0, a, x, a+ x} =/= and we can take
an element y eK\{O,a,x,a+x}. Then x, y eK, x=/=y, and x/y=/=a+2x=w
(because y=/==a/x) so that x+yeLcK and a+(x+y)=(a+x)-+-yeK as
a-t-x, y e K, a/x=/=y, and a/(x/y)=/=a+2x=w (because x:/=:y). We have
furthermore 2x+y=x+(x/y)eK a.s x, x/y e K, xx+y (because y=/=0)
and 2x+y =/= a/2x w (because y =/= a), and 2 (x+y) (2x+y) +y e K K as
2x+y, y eK, 2x-+-y:=/=y (because 2x=/=0). We have also a/2(x+y)=
(a+x-t-y)+(x+y)eKoK asa+x+y, x+yeK and a+x+y=/=:x+y. Thus
both 2(x/y) and a/2(x-t-y)eK K. As these are different elements, one
of them should be in K, and x+y is improper. The existence of an im-
proper element is thus shown in case a+x e K.

Suppose now a+x=w. As k_5, we can take an element y of
K\{0, a, x}. Then a, y e K and a+y:/:a+x=w. Therefore a+y e LK.
I 2y=x, we have 0:/:2y e K and y is improper. I 2y:/:x, then a+2y
a+x=w and a+2y=(a+y)+yeKoK, so that a+2yeLK. Thus y is
improper if 2y:/:0. In case 2y=0, put z=x+y. We have x, y eK, x:/:y
and x+y:/:a+x=w, therefore z e LK. Furthermore 2z=2x:/:0 and a+z
=a+(x+y)eLK as a, x+y eK and (a+x)+y:/:a+x=w, and a+2z--
(a+z)+z e LcK as a+z, z e K, a+z:/:z and a+2z=a+2x:/:a+x=w. Thus
z is improper, and we have shown the existence of an improper element
in all cases.

Now let ] be any natural number, and consider the following three
properties of an improper element x"

A" ]x:/:O and a+]x:/:O,
B ]x e K or a+]x e K,
Cj" ]xeKoK and a+]xeKoK.

It is clear that C implies A and B. We see that C/ follows from A



248 T. SzN and F. WETTL [Vol. 64(A),

and B /. In fact
(]+2)x-x+(]+l)x-(a+x)+(a+(]+l)x} e K K

because x=/=:(]+l)x, a+x=/==a/(]+l)x in virtue of A, and x, (]+l)x e K or
(a+x), a+(]+l)x eK in virtue of B/ and the improperness of x,

a+(]+2)x--(a+x)+(]-t-1)x--x+(a+(]+ 1)x} K K
holds or the same reason.

It is easy to see that A, B hold for ]--1, 2 for any improper element
x, whence C, C, and A, A, should follow which implies a contra-
diction because A can not hold if n is the order of x. Thus we have
proved K--I. We see also that w is an involution because w--u+v, u,
v eI:.

To complete the proof of our theorem, put H--(K+w)U {0} and let us
show that H is a subgroup o G. Using K--I:, it is easily seen that K+w
--LU (w}=K K. Let x, y e H. If x or y--O or x--y, it is clear that
ell. Otherwise we can write x--Xo+W, y-yo+w, xo, Yo eK, xo==/==yo. Then
x+y- x0 / Y0 e K KcH, which shows that H is closed under addition.

(to be continued.)
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