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70. On Complexes in a Finite Abelian Group. 1

By Tamés SZONYI® and Ferenc WETTL**)
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1988)

Let G be a finite abelian group, written additively, which will be fixed
throughout this paper. We shall consider complexes, i.e. nonempty sub-
sets of G. For g e G and two complexes A, B, we shall write

A+g={a+glacAl],
A+B={a+blacd, beB},
AoB={a+blacA, beB, a*b}.

We were led to this latter operation o in our geometric research [2]
(see also [1]) on ovals in a finite projective plane, in which some of the
results of the present paper were needed.

For a complex K, we shall write |K|=Fk, |K o K|=m. The object of this
paper is to prove the following three theorems.

Theorem 1. If k=m>4 for a complex K, then one of the two state-
ments holds:

(i) K is a coset of a subgroup of G.

(i) There exists an element g of G such that K+g has only invo-
lutions and (K+g)U {0} is a subgroup of G.

Theorem 2. If K4+K=Ko K, then one of the two statements holds:

(i) K+K=K-K is a coset of a subgroup of G.

.. 3
>k
@3i) m> 5

Theorem 3. If |G| is odd and K+K+Ko K, then
k—3—+/5I*—10k+9 _ Vb +1 b V5 +3 _'_0(1).

> —_
m= 2 3 2

k

Let us begin with

Lemma 1. K s a coset of a subgroup of G if and only if k=|K+K]|.

Proof. The only if part is obvious. Suppose now k=|K+K|. Let
aecK and put K—a=H. Then clearly 0c H, |H|=Fk and |[H+H|=|K+K]|
=|H| and Hc H+ H which implies H=H+H. Thus H is a subgroup of G
and K is a coset of H.

Corollary. If k=m and Ko K=K~+K, then K is a coset of a subgroup
of G.

This corollary allows us to reformulate our Theorem 1 into the follow-
ing form.

Theorem 1’. Suppose K+K+K K and k=m>4. Then (ii) of Theo-
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rem 1 holds.

This can be again reformulated as follows.

When K4+ K+Ko-K, K has an element a such that 2a can not be
written as b+c, b, ce K, b+c. Take such a € K and put K’=K—a. Then
0cK', 0¢eK'-K', |K'|=k, |K'cK'|=m. Rewriting K for K/, we see that
the proof of Theorem 1’ can be reduced to that of

Theorem 1”7. Suppose

(0) 0cK but 0eKoK.

If k=m>4, then K\{0} consists of involutions and there is an involution g
of G such that (K+g)U {0} becomes a subgroup of G.

In the following (until the end of the proof of this theorem except in
the corollary to Lemma 3) we suppose always that our K satisfies (0). We
introduce the following notations (for such K):

We put for z ¢ K, x+0,

K,=a+(K\{0,2))
and for ue G

K ={zxeK|uekK,.
K* consists of those elements of K for which u=2x-+% has a solution with
x,ye K, y#0, x#y. Obviously we have

0, te K,UK*, |K,|=k-2
and hence
|[K,NK|>(k—2)—(m—k+1)=2k—3—m.

Lemma 2. Suppose that K (satisfying (0)) has no involution and m>k.
Then |K*|<m—Fk-+1 for u(+0) e K.

Proof. We have K*NK,=@, because from x ¢ K*N K, would follow
u—x € K (since x e K,,) and x—u € K (since x ¢ K*). Since K has no invo-
lution, x—u+u—=x, but 0=(@—u)+(u—2x) ¢ Ko K in contradiction to (0).
As K*UK,C (K- K)\{u}, we obtain m—1>|K*UK,|+|K*NK,|=|K*|+|K,|
=|K*|4(k—2), whence conclusion.

Lemma 3. If K (satisfying (0)) contains mo involution, then m>
B/2)k—2.

Proof. We count N=|{(u,K,)|ueK,}| in two different ways. In
counting first x and then u e K,, we see N=(k—1)(k—2). If one counts
first «# and then x with « € K,, one obtains

N= > K= > |E+ ¥ |K"|

UEKK u€ (K- K)NK UE (Ko K)\K
<(k-Dm—k+1D)+m—Ek+1)(k—1)

in virtue of Lemma 2, as (K- K)NK|=k—1, |K*|[<m—k+1, |(K-K)\K|=
m—k+1, |K*|<k—1, whence conclusion.

Corollary. If K contains no involution and k=m>4, then KoK=
K+ K, so that (in virtue of Corollary to Lemma 1) K is a coset of a subgroup
of G.

Remark. The following example shows that the number 4 in the
above corollary can not be replaced by a smaller number. In this example,
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we have k=m=4, K contains no involution and is not a coset of any sub-
group of G: G=Z/12Z, K={1, 5, 7, 11}, K- K={0, 4, 6, 8}.

Proof of Theorem 1”. We suppose that K satisfies (0) (so that Ko K
#K+K) and m=k>4. Put K\{0}=L. As K50, we have Ko KDL and
since m=k, (Ko K)\L consists of just one element, denoted w, and from
x,ye K, x+y follows x+y e LCK or x+y=w, an argument which will be
repeatedly used in the following.

By the above corollary, K contains an involution, denoted a (s0).
Put Iy={r e K|20=0}. We have KDI,D{0,a}. Now we shall prove K=
I, in showing that K\I,= @ leads to a contradiction.

An element x of K\I, will be called improper if a4z ¢ K and either
2x or a+2x ¢ K. We shall show that an improper element should exist, if
K\Ix+@.

Let x be any element of K\I,. Then x ¢ K and 2¢-+0. We have a ¢ K
and 2a4=0, so that a=#=x. If a+2 e K and a+2x=+w, then z is improper,
because a+2x=(a-+2)+2x € K since z, a+2x ¢ K and x+#a+x.

Suppose a4z € K but a+2x=w. Then z is still improper, if 2z ¢ K.
Suppose therefore 22 ¢ K. As k>5, K\{0,a,x,a+x}=@ and we can take
an element y € K\{0,a,z,a+2}. Thenx, ye K, x+y, and v+y+a+2x=w
(because y#a+x) so that r+yeLcK and a+@&+y)=(@+2)+ycK as
at+z, ye K, at+x+y, and a4 (x+y)#a+2x=w (because x+y). We have
furthermore 22 +y=x+@&+y) e K as z, x4y e K, x+x-+y (because y+0)
and 2zx+y+a+2x=w (because y#a), and 2(x+y)=Qx+y)+yec K- K as
2c+y, yeK, 2x+y+y (because 2x+0). We have also a+2x+y)=
a+zx+y+@+yeKoK asat+x+y, x+yec K and a+x+y+x+y. Thus
both 2(x+vy) and a+2(x+y) e Ko K. As these are different elements, one
of them should be in K, and x+¥ is improper. The existence of an im-
proper element is thus shown in case a4z ¢ K.

Suppose now a+4z=w. As k>5, we can take an element y of
K\{0,a,2x}. Then a, ye K and a+y=+a+x=w. Therefore a+yecLCK.
If 2y=2x, we have 02y ¢ K and y is improper. If 2y=zx, then a+2y=+
at+z=w and a+2y=(@+y)+ycK-K, so that a+2yc LCK. Thus y is
improper if 2y+0. In case2y=0, put z=x+y. We have z, ye K, x+v
and z+y#a+x=w, therefore z¢ LCK. Furthermore 22=2x+0 and a4z
=0+ @+y)eLCK as a, z+ycK and (a+x)+y#a+x=w, and a+2z=
(a+2)+zeLCcKasa+tz,2zeK,a+2#zanda+22=a+2x+a+2=w. Thus
z is improper, and we have shown the existence of an improper element
in all cases.

Now let 7 be any natural number, and consider the following three
properties of an improper element x:

A,: jx#0 and a+jr+0,
B,: jaeK or a+jrek,
C,: jxeKoK and a+jreKo-K.
It is clear that C, implies A, and B,. We see that C,,, follows from 4,
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and B,,,. In fact
(+r=z+G+De=(@+r)+{a+G+Da}e K- K
because v (j+1)x, a+2x#a+ (G + Dz in virtue of A,, and z, (j+1)z e K or
(@a+2), a+(G+1x e K in virtue of B,,, and the improperness of z,
a+(G+2)z=(@+2)+ G+ Dr=az+{a+(G+Dr}e Ko K
holds for the same reason.

It is easy to see that A,, B, hold for j=1, 2 for any improper element
x, whence C,, C,, --- and 4,, A,, - - - should follow which implies a contra-
diction because A, can not hold if % is the order of xz. Thus we have
proved K=1I,. We see also that w is an involution because w=u-+v, 4,
vely.

To complete the proof of our theorem, put H=(XK-+w)U {0} and let us
show that H is a subgroup of G. Using K=1,, it is easily seen that K +w
=LU{w}=Ko-K. Letx, yeH. If x or y=0 or x=v, it is clear that x+y
e H. Otherwise we can write x=x,+w, y=9,+w, %, ¥, € K, x,#vy,. Then
r+y=2u,+Yy, € Ko KCH, which shows that H is closed under addition.

(to be continued.)
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