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62. Zeta Zeros and Dirichlet L-functions
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Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., June 14, 1988)

§1. Introduction. Let 7 run over the imaginary parts of the non-
trivial zero of the Riemann zeta function {(s). We have conjectured that
(b7/2r) log (v /| 2rea) is uniformly distributed mod one for any positive b and
o when 7 runs over the positive parts. Although this is far beyond our
present knowledge, we might be in a position to understand satisfactorily
the exponential sum of (b7/2x) log(|7|/2rea) for any positive b<1 and any
positive « by the theorem of the author’s [1]. The purpose of the present
article is to show that the distribution of (b7/2x) log(|7|/2xea) mod 1 causes
much complications unless b=1. Moreover this will be realized in con-
nection with the Dirichlet L-functions L(s, X). We assume the Riemann
Hypothesis throughout this article.

We recall two theorems for the case b=1. First, in the previous article
[2] we have shown, in the corrected form, the following theorem as a con-
sequence of the author’s result which states that

lim 1 5 e(—Llog 7 )z{—ewmg;:—) if « is rational

T —o0 0<r=T . . . .
T o 2r 2rea 0 if « is irrational,

where we put e(x)=e€** and C(a)=(q)/¢p(@)y/ @ with the Mobius function
¢(q) and the Euler function ¢(q) when a«=a/q with relatively prime integers
a and ¢=1 (cf. [1D.
Theorem A. Let L(s, X) be a Dirichlet L-function with a primitive
character X mod ¢=3. Then we have
lim 2% 5 (L(l+ir, x>—1)= LA, DU=Dem D L L1 ),
2 ol L

T—w T oG=ET

where we put ()=, X(a)e(a/q).

Second, Sprindzuk [5] has shown the following theorem by extending
Linnik’s works [4].

Theorem B. Let q be an integer =3. The Generalized Riemann
Hypothesis (G.R.H.) for all L(s, 1) with a character X mod q is equivalent
to the relation

_T_ M) —(1/2)1:]T|< 'ﬂ)_a/z)_”____ i(Q) _]-_ —(1/2)-¢
5 e( 210z 7L e o+ 2 Tty & T oE )
as x—+0 for any positive ¢ and any integer o with 0<|a|<q/2, (a, @)=1.

We shall extend Theorems A and B in the direction of <1 and b>1,
respectively.

Theorem 1. Let L(s,X) be a Dirichlet L-function with o primitive
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character X mod ¢=3. Let K be an integer =2. Then

. O \ B/4) +A/4E) 1 .7 T L' (K+1
im(ze) (B e T (5)
- \Tq 0<Z‘§:T 2 _HK 2r L 2

_ {C(K, Q) (%0 if =1,
0 otherwise,
where we put C(K, Q) =4K+1—2,/q K'*~ ) [ qBK +1)(K—1) and X, is the
principal character mod q.
This is a consequence of our result on the exponential sum
1 T
o<éT ¢ ( 27K rlog 2rec ) for K22.
The corresponding theorem for £(s) is also interesting and the result may
be stated as follows.
Theorem 1/, Let K be an integer =2. Then
. 21 1,.7 ¢ (K+1
tim 772 (5 +ig) )= (")
We next state our extension of Sprindzuk’s Theorem B.
Theorem 2. Let q be an integer =38. Let K be an integer =2. Then
G.R.H. for all L(s, X)with a character X mod q is equivalent to the relation

Z e<ﬁ logﬁ>e—(1/2)n7KT(K-1)/2<x+2n_i—a_>-(1/2)K—-K17
>0 \ 27 e q
K1 d/K a
+B(K) >, > logp-e =" e(-——— p‘”")
d=1,dxK p q

= —'I—B(K)M—l—()(x‘“/z)‘s)
» (@)

as x—+0, for any positive ¢ and for any integer o with 0<a<q, (a, ¢9)=1,
where we put B(K)=2r) 2K~ ¥ +)2g-@1E-D qnd p runs over the primes.

We denote the first and the second term in the left hand side of the
last relation by ©; and &, respectively. It might be that neither &; nor
Sy 18 0(x~“/»-¢), because it is expected that

KT KT 9
02";16(?{ log 2realq ) ~C¢r
with 0<¢<1, in which case we should have ©;~C’x~¢-'**+Y/» and Sy must
give the same order of the magnitude as z—+0 and cancel each other up
to —(1/2)B(K)u(Q) ] ().

§2. Proof of Theorem 1. Let X be a primitive character mod ¢=3.
Using the approximate functional equation of L(s, X) (cf. p. 93 of Lavrik [3])
and a modified version of Theorems 1’ and 2’ in [2] whose proof is implicit
in the author’s [1], we get for k=1/K, 6=1/log T and T'>T,,

2, (£ i z)-1)
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q

nS Vg Th/Zn nk<1< m‘T/%n)k

=8,—B(X)S,+0(T¢+/tg-¢ o6 T),

say, where C denotes a positive absolute constant and we put
BM)=vK]qc()x(—1)/2q

and A(x) is the von-Mangoldt function.

It is easily seen that

s- 1 (K4
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where (X%, X)=1 if X*=%, and =0 otherwise.
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(b,q)=1
The last inner sum is evaluated by the following lemma.

Lemma 1. Let q be an integer =2 and K be an integer =1 and sup-
pose that (n,q)=1. Then
a, nb* , o
5 (M) =5 wae),
b=1,(b,0)=1 q 7
where X’ runs over all characters mod q for which X'*=X,.
This is an immediate consequence of the following lemma which can be
easily proved.
Lemma 2. Let q be an integer =2 and K be an integer =1. Then for
any ¢, (¢, @)=1, we have
1=3171'(0),
(b,9) =1,0K=c(q) ’

X
where X’ runs over all characters mod q for which X'*=1,.
Using Lemma 1, we get

Si=00%, (L) 8K [(aK ~ ) BK+ 1) +0(aT) 7.

Combining these results, we get Theorem 1 with the remainder term.
§3. Proof of Theorem 2. Let I'(s) be the I'-function. By evaluat-
ing the integral
1 2+ 40
2nt Ja-io
in two ways, we get the following exp11c1t formula for any y>0 and any
integer K>1,
f} Am)e- v = _K > I'(Kp)y*+@(y),  where p
n=2 14
runs over 1 /2)+i2’ and we put

(D(y)—#+n}_] (2 K),<ogy+K (14+2nK)—logn

(s)F(ks)y' *ds
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We may replace y'/* by xz+iv, where v=2za/q, (¢, 9)=1, a,¢g=1and r is a
sufficiently small positive number. We see easily that

5 A(n)e‘”"""e(— % 1/K) Slogp-e~ e(— E.p) +Gy+ 0@ log (1/2)).

n=2

Since ¢((x+iv)*)=0(1), we get
Z logp.e-xp-e(—%p>= —@*B_KZF(KP)(%'+7:’U)"KP-I—O(x‘(l/z)_‘)
» 3

=—F(x; K, a/q)+0(x "), say.
Suppose first that F(z; K, a/q)= —(u(@)/ (@) (A /2)+O@x-»-¢) for all a
satisfying (@, ¢)=1 and 1<a<q. Then for Res>1 and for a Dirichlet
character X mod q,

%,—(s, 0= T )t( g% a)j (Z logp-e- ’“’e(——g@))%s ‘dac+ Ry(s)
== rorm @], (4 5+ 0w ) et B,

where R,(s) and Ry(s) are regular for Res>(1/2) and 7 is a small positive
number. The last expression represents a regular function in Re s>(1/2)
unless X=2%, and s=1.

Conversely, if G.R.H. holds for all L(s, x) with a character X mod g,
then for any (a, ¢)=1,

~F@; K, a/)=—t 5 o b)zx(b)zxmm(n)e o

o(Q) v=1G0=1 Py

+ #(Q) Z log p_e-zp+0(x-(1/2)—e)

1 F‘(Q) +O0(x ¢,
BERC)
Finally, since >, , I'(Kp)(x+iv)**=0(1) and by Stirling’s formula,
we get an expression as is described in Theorem 2.
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