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1. Introduction. Given a common finite extension of two (conserva-
tive) ergodic flows we will construct a type III factor, its subfactor, and a
normal conditional expectation (with finite index) such that the flows of
weights of these factors are the given two ergodic flows.

In our previous announcement [3], we showed

Theorem 0. Let M be a factor of type I1I with a subfactor N. Assume
that E: M—N is a normal conditional expectation with Index E<oco ([5]).
Let (T¥, X,), (TF, X,) be the flows of weights of M and N respectively.
Then there exists a (not necessarily ergodic) flow (T,, X) satisfying :

(i) X is isomorphic to X,x{1,2,---,m} as a measure space for some
positive integer m, m <Index E, and simultaneously to X, x{1,2, - - -, n} for
some positive integer n, n<Index E,

(ii) the projection map ry (resp. ry) from X onto X, (resp. X ) intertwines
T, and T¥ (resp. T, and TY).

As mentioned at the beginning, we will obtain a converse of Theorem
0. Full details and further analysis will be published elsewhere.

2. Main theorem and remarks. Unless otherwise is stated, we will
use the same notations as in [3]. All undefined terminologies can be found
in [3] or references there.

At first we briefly recall main steps of Theorem 0. Let M, be the basic
extension of M2N and E,, : M,—M be the canonical conditional expectation
constructed from E-' in the usual way (see [4], [5]). Let ¢ be a faithful
normal state on N. Setting y=¢oE e Mj and X=+0E, € (M,)}, we looked
at the inclusions

My=M,x ,R2M=Mx 4 R2N=Nx 4R
of continuous crossed products (all acting on L*(M)). Let {6,},c z be the dual
action on these algebras. The measure space X, is defined as the spectrum
of the center M NI, i.e., L~(X,)=MnNDM’. Notice that we are not inter-
ested in a measure itself on X, but just a measure class. The space X,
and all other measure spaces in this paper are standard Borel. The space
X, is defined analogously. By the point-map realization theorem, 6, induces
an ergodic flow T (resp. TY) on X, (resp. X,). The resulting flows
r¥, X, (T¥, X,) are the flows of weights of M and N respectively. Set
Z=UINNYNINNY, the center of the relative commutant. From (Z,4,)
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we also get a (not necessarily ergodic) flow (X, T,). The three flows are
related to the each others as described in Theorem 0. A crucial observa-
tion here was that (T,, X) can be identified with the flow arising from
JMINNYNWMINNYY=,NM)N(M,N MY and 6,, where J is the
modular conjugation on L*().

Since the common extension is finite to one, we observe that there are
only finitely many ergodic components. Each ergodic component itself is
a common extension of the two flows of weights. Let X, X,, ---, X, be the
ergodic components in X, and assume that n,|y, and =|y, are m, to one and
n; to one respectively. (Hence, m,+my+ - - - +m,=m and n,+n,+ - - - +n,
=n.)

Proposition 1. If a ratio m,/n, is independent of i, then the product
mn satisfies mn<Index FE.

Generally this ratio is not constant. However it is in the case that M
is of type III,, 0<<2<1l. We thus obtain a slight strengthening of the result
in [3]. An analogous result was independently obtained by Loi, [6].

As mentioned above X appeared as the spectrum of the abelian algebra
WINN)YNWINNY.

Remark 2.. The same construction as our proof of Theorem 0 works
for the smaller abelian algebra Z(M\ Z(N).

The reason why (Z(N)S)Z()\V Z(NXS Z(WIN N) works is that the
modular conjugation J satisfies

o J@anN Z(N)J=2@1) v Z00).
The center of M N N’ is useful for some purposes, but for our purpose in
the present paper Z(M)\ Z(N) is more appropriate. For example, when
(T,, X) is constructed as in Remark 2, we get
L>(X )V L*(X )= L"(X).
Note that via =, and r, we may regard L~(X,) and L=(X,) as subalgebras
of L>(X).

Now we are ready to state our main result.

Theorem 3. Let (F,,Y), (S,, Z) be conservative ergodic flows. Assume
that a flow (T,, X) is a common finite extension in the following sense : there
exist finite to one maps ny and n, from X onto Y, Z respectively satisfying

ayoTl,=F,ony, and nz0T,=S,on,
and L>(X) is generated by L>(Y) and L=(Z). Then we can construct factors
M, N of type 111 with M 2N and a normal conditional expectation from M
onto N with finite index such that
(i) (F,Y), (S, 2) are the flows of weights of M, N respectively,
(ii) the common extension constructed as in Theorem 0 and Remark 2 is
exactly the given flow (T,, X).

3. Construction of type III factors. We will sketch a proof of
Theorem 3. Let « be an ergodic transformation of type III, on a space
(2, ). We set

=0, XXXR
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equipped with a measure m=pu@vQe*du, where v is a measure on X in the
given measure class. Define (commuting) transformations & and T, (t € R)
by

~ _ _ dpea
a(w, 2, u)= (a(w), x, u—log “dn (w)>,

dy
Let G be the countable abelian group generated by @ and 7, (¢t € "), where
I' is a countable dense subgroup in R (see [2]). By

R=L"(QxG
we denote the von Neumann algebra (acting on its own standard Hilbert
space H) obtained via the Krieger construction. Let &, (resp. ¥,) be the
smallest sub g-algebra which makes the map #,: (w, 2, %) € Q=2,X X XR—
(0, wy(x), u) € 2, XY X R (resp. #, defined analogously) measurable. We set
M,=L>(Q2,F,)XG (ZR), N=L"(Q2,9,)x G (ZR).
Using the modular conjugation J on H we set
M=JM;J

so that we get M2 R2N. Then it can be proved that the flows of weights
of R, M, (or equivalently M), and N are the given three flows. Notice that
M, N are factors while R is not.

Recall that von Neumann algebras constructed so far depend only on
the measure class of v. We can choose equivalent measures whose condi-
tional probabilities with respect to &, and &, are constant on each ergodic
component. Then we can construct normal conditional expectations

E,:R—-M, and FE,: R—>N.
We can do this in such a way that E;*(1) is a scalar. Then
y=ET ) IEFI - DI
is a normal conditional expectation from M onto R, and the composition
E=F, o FE, is a normal conditional expectation from M onto N.

T(o,, u)=<w, T,x, u+t—log dvo T, (x)).
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