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Introduction and results. Let K be a compact set in R™ (m=2 or 8)
with smooth boundary 9K. Let I'(t) be a simple closed surface in R® (or
curve in R*) such that K is contained in the interior of the region sur-
rounded by I'(f). The time-dependent space domain Q2(¢) is a bounded set
in R™ whose boundary 02(t) consists of two components, i.e.

02(t)=0K UTI'(t).
Such domains Q2(t) (0<t<T) generate a non-cylindrical domain 0= Uosesr
-Q() X {t}, where we consider the following initial value problem for the
heat convection equation of Boussinesq approximation :

ot @ Vu=—YP 4 (1—a(@—T)g+vdu  in 9,
0
(1)

divu=0 in 0,
6,4 (u-V)o=rAg in 0,
(2) oy =B, 1), 6l,x=Ty>0, 6|r,=0 foranytel0,T],
(3) Uo=0a, 0lio=nh in £2(0),
where u=wu(z, t) is the velocity field, p=p(z, t) is the pressure and §=46(x, t)
is the temperature; v,x, a,p and g=g(x) are the kinematic viscosity, the
thermal conductivity, the coefficient of volume expansion, the density at
6=T, and the gravitational vector, respectively. According to Boussinesq
approximation, p is a fixed constant. The differential operators A and V
mean those for « variables only. Concerning the Navier-Stokes equation,
Fujita-Sauer [1], Otani-Yamada [6], Inoue-Wakimoto [2] and H. Morimoto
[5] studied the initial value problem or the time periodic problem in some
time-dependent domains. As for the stationary problem for the heat con-
vection equation, we refer to, for instance, P.H. Rabinowitz [7] and D.H.
Sattinger [8]. We note, as a physical example, the convection of the earth’s
mantle which may occur in the interior of the earth.

We make some simplifying assumptions on p(x, t) and 2(2).
(Al) B=0. (This may not be physically realistic.)
(A2) There exists an open ball B, such that 2(t)CB,.
(A3) I'(t) and 9K are smooth (say, of class C®). Also I'(t)x{t} (0<t<T)
changes smoothly (say, of class C*) with respect to . (Namely, the domain
P=Usrcr )X {t} has the same properties as those in [1] and [6].)
(A4) g(=) is a bounded and continuous vector function in R™\int K.
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Our main results are as follows. (The definition of weak solutions,
strong solutions and the function spaces are to be given in the next section.)

Theorem 1. Assume (A1)-(A4). If a e H,(2(0)) and h e L*(2(0)), then
there exists a weak solution of (1)-(3) for any time interval [0, T1.

Theorem 2. Under the same assumptions of Theorem 1, if a € H:(2(0)),
h e WYR2(0)), hix=T, and h|r,=0, then there is a positive number z, de-
pending on a, h and T, such that the initial value problem (1)-(3) has a
unique strong solution on [0, z,].

The author wishes to express his hearty thanks to Professor H. Fujita
and Professor T. Suzuki for their valuable advice.

Notations and formulation. For a bounded domain £ in R™ with
smooth boundary 92, we write ||«|, or simply | «| instead of ||%| ... The
inner product in L*(2) is denoted by (%, v) 1y, (%, V), or (u,v). The solenoi-
dal function spaces are defined as usual :

D, (D) ={pe Cy(2); dive=0},

H ,(2)=the completion of D,(2) under the L*(2)-norm,

H!(2)=the completion of D,(2) under the Wi(£2)-norm.
For the time-dependent domain Q= U<, 2(t) X {t}, described in the pre-
ceding section, we put

D,(0)={pe C3(D); dive=0},

HA1(9)=the completion of D,(£) under the norm v,(-),
where v, () =||Vu|ls;

D(@)={y e C”(m) ; suppCQ(/t)-Ua\K and =0 on oK},
B 1(D)=the completion of D(0) under the norm v(-),
/\
where v(w) =|Vu|; and 2(t) UK = U << (2(8) UGK) X {t}.

Moreover,
D, D={pe D, (D); p=0at t=T},
DD ={weD(D); y=0at t=T},
VD ={p e BD; es8.8up. | ¢(t) l1acacn <+ o},
EZ'(.Q):{\[, € FP(Q) 5 esoi}i‘rlp. 9B zacoqeyy < =0}

We introduce an auxiliary— function 6(x, t) solving

05=A0 in Q,
(4) 0|3K=T07 6|F(t)=0 for any te [O, T],
01 ~o=1n() in 2(0),

where () satisfies Ayp=0 in 2(0) with »|;x=T, and |y =0.
Under these preparations we can define the weak solution of (1)-(3).
Definition 1. U="*(u, ) defined in £ is a weak solution of (1)-(3) if
the following (i) and (ii) are satisfied :
(i) “u,6—0) e UDxT(D).
(ii) For all 0="(¢, ) € 9.(D) x () the equality

(5) J-OT (U, D)+ U, (- VIO +v(u, Ap) + (6, Ay) +((1— (6 — T)) g, 0)}dt
=f j 7,9 dsdt—(A, 6(0))
0 JIK on
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holds, where A="%(a, k).

We will now define the strong solution of (1)-(3). First of all, we
consider the following proper lower semi-continuous functions and subdif-
ferential operators:

%j G|VuP+£|VoPde it Ue HX(B)X WiB),
B

+oo  if Ue(H,(B)X LAB)\(HXB)X Wi(B)),
(7) 0p(U)="(A,(B)u, —kA)=A(B)U,
where B=B,\K, A,(B)=—vP,(B)A and P,B) is the orthogonal projection
from L*(B) onto H,(B). It is known that D(A(B)), the domain of the oper-
ator A(B), is equal to (Wi(B)N HL(B)X(WiB)N VT’;(B)). We next define a
closed convex set K(¢) of H,(B)X L*(B) by
K@t)={U e H,(B)XL*B); U=0 a.e. in B\2()}

for each t € [0, T] and write its indicator function by I, that is, I, (U)
=0 if UeK@®) and I;,(U)=+c if UeH,(B)XL*(B))\K(t). Here we
define another p.l.s.c. function
(8) " (U)=(0) + 1, (U) for each t ¢ [0, T1.
We consider the subdifferential operator d¢‘. It holdsthat D(d¢")={U ¢ H,(B)
X LAB) ; Ulaw, € (W) N HLQE)) X (WAL N WD), Ulmow =0} and
00" (U) ={f e H,(B)X LXB) ; P(Q()flawy=ARE)U o)} wWhere P(Q(t)="(P,
(@), 154). (See [6] and [9].) Then we can reduce the initial value
problem (1)-(3) to the one for the following abstract heat convection equa-
tion (AHC) in H,(B) X L*(B) :
(AHO) %‘{— +o' (V) +FOVD+M@)V(E) > P(B) f(D), telo,T],
where V ="'(v,6), FOV@E)="P,B)(v-V)v, (v-V)§), MOV (E)="(P,(B)xbg,
-8, f="(f f)="((A—a@—Ty)g,0) and P(B)="(P,(B),1). (See[6]and
[91.)

We define the strong solution of (AHC) as follows.

Definition 2. Let V:[0,S]—-H,(B)x L*B), S e (0, T]. Then V is called
a strong solution of the initial value problem for (AHC) on [0, S] if it satis-
fies the following properties (i), (i) and (iii).

(i) VecC(0,8]; H,(B)XLYB)) and dV/dt € L*(0, S ; H,(B)X L*B)).

(i) V(@) e D(o¢) for a.e. t € [0, S] and there is a function G="(g,, 9,)
e L¥0, S; H,(B) X L*(B)) such that G(t) € 9¢'(V(¢)) and

AV GO+ FOV@+MOVO=PB) S (0)

hold for a.e. ¢t [0, S].

dii) V@©)=:(a, 7, —6(0)) holds in H,(B)X L*B) where d, k and 6 mean
the natural extension of a, » and 8, respectively.

Remark 1. Let V be a strong solution of (AHC). Then we can show
that U=V|;+%0, §) actually satisfies the heat convection equation for a.e.
te[0, S].

(6) SDB(U)=
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Outline of the proofs. Theorem 1 is proven by the method of [1], [4]
and [5]. We employ the penalty and the Galerkin’s approximation.

Theorem 2 is proven by an iteration. To show the convergence of the
iterated sequence, the following is important :

Lemma 1. Let U: [0, T]—-H,(B)X L*(B) and ¢'(U(-)): [0, T]—[0, + o0)
be absolutely continuous on [0, T]. Let L={te(0,T); dU/dt, de*(U®))/dt
exist and U(t) € D(@¢")}. Then, there exist positive constants C, and C,
such that
(9) | yWt)-(6 L U®) | SC|Cluwm ¢ UE)+Ca g UE)

dt dt L2(B)
holds for every t e L and G € dp"(U(1)).

See also [6] and [9].
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