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112. Gram’s Law for the Zeta Zeros and the Eigenvalues
of Gaussian Unitary Ensembles

By Akio Fujnu
Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1987)

§1. Let 7 run over the positive imaginary parts of the zeros of
the Riemann zeta function Z(s). Let I'(s) be the I'-function and 9(t)=
Im (log I'(1/44+(1/2)it))—(1/2)t log =, where ¢ is a real number. We define
9. by 9(g,)=2x for x> —1, where 9(t) is strictly increasing for t>7. Here
we are concerned with the following problem.

Problem. To study the quantity defined by

lim —- Gie(k, @)

for each integer k=0 and any positive number «, where we put
Gull, a)=[ {~1zmzm; | {r=9-GoI+1); 290 € I, m+a)}[=k}[,
T

T being counted with multiplicity.

We recall two observations concerning this problem. First Gram
observed more than eighty years ago that the zeros of {(1/2+it) appears
exactly once in the interval (¢,,, 9...,) up to t¢<50. This phenomenon, which
seemed to Gram to continue also for t>50, has been called Gram’s law
although many counter-examples have been observed since Hutchinson (cf.
chapters 6, 7 and 8 of [2] for a detailed description of the history). Gram’s
law implies that for any integer M > —1, Gk, 1)=M +2 if k=1 and =0 if
k1. Second, the latest computer calculations by van de Lune, te Riele
and Winter [14] tell us that for M =1500000000, (1/M)G,(0,1)=0.1378-- -,
1/M)G,(1,1)=0.7261---, (1/M)Gx(2,1)=0.1342... and (1/M)G,@B.1)=
0.0018. - . and that (1/M)G,(k, 1) increases for k=0, 2 and 3 and decreases
for k=1 as M becomes larger. We remark here that in both observations,
all the non-trivial zeros of £(s) are on the critical line and are simple as far
as they have calculated. In this note we shall state some results and con-
jectures concerning the above problem.

§2. We denote the number of the non-trivial zeros of {(s) in 0 <Im(s)
<t by N(t) as usual. Since

Gulk, )=|{—1=mZM ; N(Gn.od—N@n)=k}|
and N@)=="'9(t)+1+8S(&) for t=t,, the following means
§M(S(gm+a)——8(gm))’ for any integer j=1

must give some information on our problem, where we put S(t) =

(1/m)arg £(1/241it) as usual. The above sum is a discrete version of the
integral
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T
[ st+m-swyat,
which has been studied by the author in [4]. Extending the author’s ap-
proach in [5], where we have treated the sum
2ra(m+1) 2ram \\*
S(mgontn)Cogm )
m§M ( log (m+1) logm
we can prove the following theorem.
Theorem. Suppose that M >M,, j is an integer =1 and positive «

satisfies alog M. We put a=Max (1,a). Then we have
mgM(S(gm-o-a)—S(gm))L

_{ @D y1(210g a)'+ OM(A7) '+ (og &) ~")  for 1=2;

2r)" !
OM(A7Y (G +(oga) "))  forl=2j-1,
where A is some positive absolute constant and the estimate is uniform
with respect to M, j and a.
As consequences we can derive several results on G,(k, «) as we have
derived from our mean value theorem for S(t+ h)—S(t) (cf. [3]). (We may
remark here that one gets the same dependence on ! in our mean value

theorem r (S(t+ h)—S())'dt if one is a little bit careful at the last stage of
0

its proof (cf. Joyner [7]).) We may state some of them as follows.
Corollary. (i) Suppose that a=a(M) tends to o as M tends to oo.
Then we have for any real B,
| NG+ —N(g)—a _[f -
Mmoo {mSM V2 log a/2n <B}\‘I_w e rdz.
(ii) Let a>a,and M>M, Then there exists some positive constant
A such that

Gulk,a)>M and

k2a+ 4 log a-log log a

GM(k’ a)>M.

0<kZa—Alog a-log log a

(i) If a>wy, then for some k=0,1,2, .

lim GM(k 0 L
Moo k!

(ii) implies, in particular, that G,(0,1)>M and > 5., G,(k,1)>M. This
result is stated in p. 199 of Selberg [12]. (iii) implies that the distribution
is not Poisson. The numerical computations quoted above also indicate
that the distribution may not be Poisson even in the case a=1.

§3. Here we shall state some conjectures concerning our problem.
We start with recalling the well known conjecture of Montgomery [9] in
the following form.

Montgomery’s conjecture. For 0<a,<a<a,<oo,

|{o<r 1<T; 0< 1 —1< 2% }l T logTJ‘( (Sm”“))du,
log T
where 1 and 1’ run over the imaginary parts of the zeros of {(s).
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Moreover Dyson seems to have remarked that the function which ap-
pears in the right hand side of Montgomery’s conjecture is the same as the
pair correlation of the eigenvalues of Gaussian Unitary Ensembles (cf. [9]).
We next recall that Gallagher and Mueller (cf. p. 208 of [6]) have deduced
from Montgomery’s conjecture that

r (S(t+ 2mat )—S(t))zdt~(oc—a2+o(a2))T as T—oo and a—0.

0 log T

We turn our attentions to our problem. To apply Gallagher-
Mueller’s argument to the present situation seems to give us a more delicate
problem. We need to evaluate |{m<M; m=[9(0)/=]l=[9(0")/x], 0<r <V
<9 ((M+1)n)}|. Soinstead of connecting our problem with Montgomery’s
conjecture, we proceed to extend Dyson’s remark. We propose first the
following.

Conjecture 1. For each integer k=0 and for 0 <a<a,<oo,

lim -1 Gu(k, ) =E(k, ),
M- M
where E(k, a) will be defined below.

We define E(k, @) as follows. Let 2,’s run over the eigenvalues of the

integral operator

A1) =r sin ((y —#)ma) F(x)dx
-1 (Y—x)re ’

where the eigen-function f is called a spheroidal function. Then we define
for k>0 and for 0 <« <a,,
— — 271 v l.hc
E(k,oc)—-]—j[ (1=2) fl<§<jlc 1-2, 1-2,,
(cf. 2.32 of Mehta-Cloizeaux [8]). We see that E(k,1) can be computed
approximately using p. 350 of [8] as follows. E(0,1)=0.17, E(1,1)=0.74
and E(2,1)=0.13. We may compare these with (1/M)Gy(k,1) for M=
1500000000 quoted in the first section. We may also state a continuous
version of Conjecture 1 as follows.
Conjecture 2. For each integer k=0 and for 0<<a<<a,<oo,
.1 . 2no AU
lim THtg T N(t e )— N(t)_k}(_E(k, @),
We state some consequences of the above conjectures as the following
corollary.

Corolary. (i) For each integer j=1 and for 0 <a<w,,
57 (N, ) =N ~M Y WE(k,a) as M—oco and
k=0

msM
r (N(t+ 2me: )—N(t))jdt~ TS WE(k,«) as T—oo.
0 log T k=0
() 3 (S — S ~M(F = 22t} as M—seo and
mEM " " 18 675

r (S(t+ i )—S(t))zdt~T(a——a2—|—0(a‘)) s T—oco and a—0.
0 log T
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(iii) The sequence (7,)/x is uniformly distributed mod one (in the
sense of Weyl), where 1, is the n-th 7.

(ii) is a consequence of (i) and we also use p. 350 of [8]. (iii) is a
restatement of (i) for j=1 combined with the fact that > 7 kEF, )=«
(cf. II-32 of Bohigas and Giannoni [1]).

Generally, we may say that the sequence of real numbers a, is GUE
distributed if a,<a,,,<---—o as n—oo and a, satisfies the property of
Conjecture 1 (or 2) with a suitable function F(x) which satisfies |{a, <} |~
F(x) and plays the same role as 9(t)/z. So the above conjectures claim
that 7, is GUE distributed. It is an interesting problem to find a sequence
in number theory which is GUE distributed.

We remark finally that the eigen-values of the Laplace-Beltrami opera-
tor on L* (the complex upper half plane/I") for any principal congruence
subgroup I'=1I", of level p a prime >3 is not GUE distributed as a conse-
quence of Randol’s argument in [11]. However for the modular group I"
it is not clear.
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