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1. Introduction. In this paper we deal with the dependence on a
parameter 2 of T-periodic solutions for the T-periodic quasilinear ordinary
differential system:
( 1 ) x’ A(t, x, )x+F(t, x, )+ f(t).
Here A is a real n n matrix and F is an R-valued function. We assume
that A and F are defined n RRn[---o, -0], continuous in (t,x,) and
T-periodic in t, where 00. We assume that f is an Rn-valued unction
continuous on R and T-periodic.

We consider the associated T-periodic linear system:
( 2 ) x’---- B(t)x+ f(t),
where B is a real n n matrix continuous on R and T-periodic.

Hypothesis 1. For every f continuous on R and T-periodic, there
exists one and only one T-periodic solution for (2).

The qualitative studies of solutions .or the periodic quasilinear dif-
ferential system have been made under Hypothesis I (see [1], [2]). When

is sufficiently small, Cronin [1] has discussed the existence of T-periodic
solutions for
( 3 ) x’--B(t)x+F(t, x, 2)+f(t)
by applying the implicit unction heorem. When the Lipschitz conditions
are satisfied, Hale [2] has dealt with he continuous dependence on o the
T-periodic solution or (3) under some additional assumptions.

Theorem 1 in the present paper is the existence Cheorem o periodic
solutions for periodic linear systems which are close to (2) in some sense.
Theorem 2 is a strict extension of the standard result (see [1]). Moreover
we give an extent that shows how A in (1) is close to B in (2) as well as an ex-
ent that shwshw small is. In Theorem 3 we btain sufficient conditions
2or some dependence n o periodic slutins for (1). Explicit cnditions
in Theorem 4 ensure the continuous dependence n f the periodic slu-
inr (1).

2. Preliminaries. The symbol I1" will denote a nrm in R and he
corresponding nrmrnn matrices. Let C be the space o R-valued
2unctions continuous on R and T-periodic with the supremum norm. Let
C[0, T] be the space f R-valued 2unctions cntinuous on [0, T] with the
supremum nrm II" II.
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We define a bounded linear operator _L’" C[0, T]--R by .L’(x(.))=x(0)
-x(T) with the norm

Let X be the fundamental matrix of solutions for the homogeneous system
corresponding to (2) such that X(O)-=I, where I is the identity matrix.
Put Us--I--X(T), we have .(X(.)Xo)= Usxo for x0 e R.

The following lemmas are well known.
Lemma 1. Hypothesis 1 is equivalent to det Uz=/=O (see [2]).
Lemma 2. If det Uz=/=O, then we can choose a po.sitive constant

p (O<p<l) such that
(a)

Suppose that Hypothesis 1 holds, and fix a positive number p satisfying
(4). We put to-MK(I+2K/p), where

M=[ IIf(s)ll ds and K=exp ([ liB(s)I ds).
Let S={x e R Ilxll=<r} and let Cr.=(y e Cr IlYllr}, where r>ro. Now
we assume that three positive numbers/, A and 2 (2<=20) satisfy the condi-
tions (5)-(6) below.
( 5 ) K exp (K)p/{2 UI }.
( 6 ) {,zl-4-M}K exp ()[1+2K exp ()/ {p(1-- p)}] < r.
We assume that A, F satisfy the conditions (7)-(8), respectively.

7 ) .[ IlA(s, x, )-B(s)II ds<= for x e S, e A.(

( 8 ) .[ IIF(s, x, )ll ds<A for x e S,e A.
Here A [-, +].

3. Theorems. First, we consider the periodic linear non-homogene-
ous system"
(9) x’=A(t, y(t),)x+F(t, y(t),)+f(t) for y e C.
together with a boundary condition
(10) (x)=0 for x e C[0, T],
where e A. Put U=I--X(T), where X is the fundamental matrix of
solutions for the linear homogeneous system corresponding to (9) such that
X(0)=I, we have _L’(Xv(.)x0)= Uxo for x0 e R.

Theorem 1. Suppose that Hypothesis 1 holds and that the conditions
(5)-(8) are satisfied. Then, for any y e Cr. and any e A, there exists the
inverse of U such that
(1) V;ll</{(-)}
and there exists one and only one solution x e Cr, for ((9), (10)) such that

2)xv(s)ds

where p(t)=X(t) R.
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This theorem is proved in the sme manner as given in the proof of
Theorem in [3].

From the above, we obtain the existence theorem of periodic solutions
for (1).

Theorem 2. Suppose that Hypothesis 1 holds. If the conditions (5)-(8)
are satisfied, then for any e A there exists at least one T-periodic solution
for (1).

Sketch of the proof of Theorem 2. Choose 2 e A. From Theorem 1
we cn define Cr,-Cr, by [(y)](t)=x(t) for t e R, where x is the T-
periodic solution for (9) in Cr,. It can be easily seen that is compact
continuous operator. By Schauder’s fixed point theorem, has at least
one fixed point in Cr,. Thus for e A there exists. t least one T-periodic
solution for (1). Q.E.D.

Now we assume that the following hypothesis holds.
Hypothesis 2. There exists a continuous and strictly increasing func-

tion/: [0, 22]--R (0222) such that/(0)--0 and that
IIA(t,x,2)--B(t)lll(lfl) for (t,x, 2) e [0, T]SAf,

where Af= [-- 22, + 22] and R [0, + oo).
Then we have the following theorem.
Theorem 3. If, under the assumption in Theorem 2, Hypothesis 2

holds, then for any0 there exists an ()0 such that for all
there exists at least one T-periodic solution x(. ;, ) for (1) satisfying
(12) IIx(t s, 2)-n(t)ll=e for t e R,
where is the T-periodic solution for (2).

Sketch of the proof of Theorem 3. Choose such that Oe(r-ro.
Let ]=r(D satisfy the following inequality:

{r0T/2(/) +riA}K exp (/)[1 +2K exp (/) / {p(1-- p)}]
and let Cr,={y e Cr Ilyll<=}. Choose such that

We consider the following linear nn-hemogeneous system:
(13) z’ A(t, y(t), 2)z+ 2F(t, y(t), )+f(t, y(t), ) for y e Cr,
together with boundary condition
(14) _E(z)=0 for z e C[0, T],
where A(t, y(t), ) A(t, y(t)+ n(t), ), F(t, y(t), ) F(t, y(t)+ n(t), ), and

f,(t, y(t), 2) {A(t, y(t)+ (t), 2)- B(t)}n(t).
We denote Z by the fundamental matrix solutions for the linear

homogeneous system corresponding to (13) such that Z(0)=I. Put V-I
Z(T), we have A(Z(. )Xo)= Vxo fr x0 e R.

In the same rgument as given in the prof of Theorem 1 it follows
that for anyy e Cr, and any 2 e A there exists the inverse of V such that

v; =< 1/{p(1 p)}.
Moreover there exists one and only one solution z e Cr, for ((13), (14)) such
that

Al(s, y(s), 2)z(s)ds
do
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+2 oFl(s, y(s),2)ds+*ofl(s, y(s),2)ds for t e R,

where

.Ito Z;l(s){F(s, y(s), )+fl(s, y(s), )}ds or, e R.qv(t)--Z(t)

By the same argument used in the proof of Theorem 2, there exists at
least one T-periodic solution z(. , ) e C, for (13). Put x(. , )= z(. , )
+ (.), we can see that here exists at least one T-periodic solution x(. , )
or (1) satisfying (12). Q.E.D.

When A, F satisfies he Lipschitz condition, respectively, we have the
following theorem on the cntinuous dependence on of periodic solutions
for (I).

Hypothesis 3. There exists a po.sitive constant L such that
IIA(t, x, )-A(t, x2, )l]gL llx-x2

and that
IIF(t, x, 2)--F(t, x, ) IIL IIx-x

for any t e [0, T], x e S (i= 1, 2) and e .
Theorem 4. Suppose that the assumption in Theorem 3 and Hypoth-

esis 3 hold. If 2222z1--M and
(15) 2rLT(K exp ()+r/(+M)}1,
then for any e A there exists one and only one T-periodic solution x(. ;2)
for (1). Moreover

x(t )--(t) as --.0
uniformly in t e R.

Remark. From the second assertion ef Theorem 4, the T-periodic
slutin 2or (1) is cntinuus in e A.

Sketch of the proof of Theorem 4. Choose 2 e A2. First, we consider
the operator : Cr,--Cr, defined by (y)=x fr y e Cr,r, where x is the
T-periodic solution r (9) in Cr,. It is easy t shw that

[(y)](t)=--X(t)U;[.(p(.))]+p(t) 2or t e R.
We shall define k by the left-hand side of (15). It fllws that

II(y,)-(y2)[lk Ilyl-yll for y, y e Cr,r.
From 0<k <1, the first assertion of the theorem holds.

Choose, such that 0<,<r--r0. Since the assumption of Theorem 3
holds, we can define the operator _if: Cr,,-+Cr,, by (y)=zv for y e
where zv is the T-periodic solution for (13) in Cr,,. In the same argument
as the operator ,_ff is a contraction. Therefore the second assertion
holds. Q.E.D.
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