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1. Introduction. In this paper we deal with the dependence on a
parameter 2 of T-periodic solutions for the T-periodic quasilinear ordinary
differential system:

(1) ¥’ =A(t, x, Dx+AF (L, 2, )+ f(D).

Here A is a real nXn matrix and F' is an R*-valued function. We assume
that A and F are defined on RXR"X[—1,, +2,], continuous in (¢, x,2) and
T-periodic in t, where 4,>>0. We assume that f is an R"-valued function
continuous on R and T-periodic.

We consider the associated T-periodic linear system:

(2) x’'=B®)x+ f(®),
where B is a real nXn matrix continuous on R and T-periodic.

Hypothesis 1. For every f continuous on R and T-periodic, there
exists one and only one T-periodic solution for (2).

The qualitative studies of solutions for the periodic quasilinear dif-
ferential system have been made under Hypothesis 1 (see [1],[2]). When
4 is sufficiently small, Cronin [1] has discussed the existence of T-periodic
solutions for
(3) *'=B@)x+AF (¢, z, )+ (1)
by applying the implicit function theorem. When the Lipschitz conditions
are satisfied, Hale [2] has dealt with the continuous dependence on 2 of the
T-periodic solution for (3) under some additional assumptions.

Theorem 1 in the present paper is the existence theorem of periodic
solutions for periodic linear systems which are close to (2) in some sense.
Theorem 2 is a strict extension of the standard result (see [1]). Moreover
we give an extent that shows how A in (1) is close to B in (2) as well as an ex-
tent that shows how small 2is. In Theorem 3 we obtain sufficient conditions
for some dependence on 1 of periodic solutions for (1). Explicit conditions
in Theorem 4 ensure the continuous dependence on 1 of the periodic solu-
tion for (1).

2. Preliminaries. The symbol ||-|| will denote a norm in R" and the
corresponding norm for n X% matrices. Let C, be the space of R"-valued
functions continuous on R and T-periodic with the supremum norm. Let
C[0, T] be the space of R"-valued functions continuous on [0, T] with the
supremum norm ||-||..
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We define a bounded linear operator _L: C[0, T1—-R" by L(x(-))=2x(0)

—2(T) with the norm
| Ll=sup {|L@CDI; #]l.=1}.

Let X; be the fundamental matrix of solutions for the homogeneous system
corresponding to (2) such that X (0)=1I, where I is the identity matrix.
Put Uy,=I—X,(T), we have L(X(-)x,)=Usx, for z, e R".

The following lemmas are well known.

Lemma 1. Hypothesis 1 is equivalent to det Uz=£0 (see [2]).

Lemma 2. If det Uy+#0, then we can choose a positive constant
p (0<p<1) such that
(4) U511/ p.

Suppose that Hypothesis 1 holds, and fix a positive number p satisfying
4). We put r,=MK(1+2K/p), where

M=j:l|f(8)||ds and K=exp<j:||B.(s)|]ds>.

Let S,={x e R"; ||z||<r}and let C,,={y e Cr; ||¥|.<7}, where r>r,, Now
we assume that three positive numbers d, 4 and 1, (1,<21,) satisfy the condi-
tions (5)-(6) below.

(5) K’5 exp (Kd)Zp/{2]| U5 [I}-
(6) {44+ MK exp (9)[1+2K exp (3)/{p(l—pH<7.
We assume that A, F satisfy the conditions (7)-(8), respectively.
(7) ~rI[A(S,96,2)—B(8)]|ds§5 for x e S,, 1€ 4,.

0
(8) JTHF(S, x, )| ds<4 for xeS,, 1€ 4,.

0

Here A,=[—2,, +2,].
3. Theorems. First, we consider the periodic linear non-homogene-

ous system:

(9) ®’'=A(t, y(t), Dx+AFE, y(@t), D+ f(t)  foryeCr,
together with a boundary condition

10) L(x)=0 for z € C[0, T1,

where 1€ 4,. Put U,=1—X,(T), where X, is the fundamental matrix of
solutions for the linear homogeneous system corresponding to (9) such that
X ,(0)=1I, we have L(X,(-)x)="Ux, for z,e R".

Theorem 1. Suppose that Hypothesis 1 holds and that the conditions
(5)-(8) are satisfied. Then, for any ye Cr, and any A€ A, there exists the
tnverse of U, such that
1 10711 /{o(—p)}
and there exists one and only one solution x, € Cy, for ((9), (10)) such that

2, &)=~ Uy 1L+ [ A, 4(6), Do,(6)ds
42 J :F(s, ¥(s), /'z)ds+j: f(s)ds  forteR,
where p,(t)=X, () f : X7 (S)AF (S, 4(s), D+ f(8)}ds for t € R.
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This theorem is proved in the same manner as given in the proof of
Theorem in [3].

From the above, we obtain the existence theorem of periodic solutions
for (1).

Theorem 2. Suppose that Hypothesis 1 holds. If the conditions (5)-(8)
are satisfied, then for any 1< A, there exists at least one T-periodic solution
for (1).

Sketch of the proof of Theorem 2. Choose 2e 4,. From Theorem 1
we can define &4 : C,,,—Cr , by [FWI{t)=x,() for ¢ € R, where x, is the T-
periodic solution for (9) in C,,. It can be easily seen that & is a compact
continuous operator. By Schauder’s fixed point theorem, & has at least
one fixed point in C, .. Thus for 1€ 4, there exists at least one T-periodic
solution for (1). Q.E.D.

Now we assume that the following hypothesis holds.

Hypothesis 2. There exists a continuous and strictly increasing func-
tion p: [0, 2,]>R* (0<2,<2,) such that p(0)=0 and that

|AE, 2, )=BO<p(2)  for (¢, 2,2 €0, T1XS, X 4,
where Ay=[—2Ay, +4,] and R*=[0, + o).

Then we have the following theorem.

Theorem 3. If, under the assumption in Theorem 2, Hypothesis 2
holds, then for any >0 there exists an 5(e) >0 such that for all 2, |2|<y(e),
there exists at least one T-pertodic solution x(- ;e,2) for (1) satisfying
(12) x(;e D—n(®)|<e  forteR,
where w18 the T-periodic solution for (2).

Sketch of the proof of Theorem 3. Choose ¢ such that 0 <le<r—r,.
Let p=1(e) satisfy the following inequality :

(T () + 741K exp (D[1+2K exp (3)/{o(1—p)}]1<e
and let C, ,={yeCr;|y|.<e}. Choose 2 such that |#<(e).

We consider the following linear non-homogeneous system:

13) 2 =A@, y(@), D2+ F, @, y@), D+ fit, y®),2)  foryeCr,
together with a boundary condition

(14) L@)=0 for z ¢ C[0, T,

Where Al(t, y(t)7 2) = A(t’ ?/(t)'i—ﬂ'(t), 2)’ Fl(t’ y(t)’ 2) = F(t’ y(t)’l"ﬂ-'(t)y 2), and
Jit, y@®), H={A(t, y(t)+=(t), H— B®)}a(?).

We denote Z, by the fundamental matrix solutions for the linear
homogeneous system corresponding to (13) such that Z,(0)=1. Put V,=I
—Z /(T), we have L(Z ()x)=Vx, for z, € R".

In the same argument as given in the proof of Theorem 1 it follows
that for any y € C,,, and any 2 € 4, there exists the inverse of V, such that
1V7I=1/{e(1—p)}.

Moreover there exists one and only one solution z, € C,. for ((13), (14)) such
that

2,()= — V1L, (- D1+ j A(s, (8, V2, (s)ds
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+2 j: F (s, y(s), 2)d8+j: fi(s,y(s),Dds  for teR,
where
0,()=2,(t) j Z;(S)AF (3, ¥(s), D+ fi(s, ¥(s), D}ds  for teR.

By the same argument used in the proof of Theorem 2, there exists at
least one T-periodic solution 2(- ; ¢, 1) € Cr . for (13). Put x(- ;¢,)=2(-;¢, 1)
+z(-), we can see that there exists at least one T-periodic solution x(- ; ¢, 2)
for (1) satisfying (12). Q.E.D.

When A, F satisfies the Lipschitz condition, respectively, we have the
following theorem on the continuous dependence on 1 of periodic solutions
for (1).

Hypothesis 3. There exists a positive constant L such that

”A(t’ 1y Z)'_A-(t’ Loy 2)”§L “xl—x2“
and that

”F(t: Ly 2)—F(t’ Loy 1) ”_S._L ”-’701—902”
forany tel0,T], z,e 8, (i=1,2) and 1€ 4,

Theorem 4. Suppose that the assumption in Theorem 3 and Hypoth-
esis 8 hold. If 2,<2,4+M and
(15) 2rLT{K exp (6)+7/ A4+ M)} <1,
then for any A e A, there exists one and only one T-periodic solution z(- ; A)
for 1). Moreover

x(t ; N)—n(t) as 2—0
uniformly in t e R.

Remark. From the second assertion of Theorem 4, the T-periodic
solution for (1) is continuous in 2 € 4,.

Sketch of the proof of Theorem 4. Choose 1¢ 4,. First, we consider
the operator : C; ,—C;,, defined by P(y)=wx, for y € C; ,, where x, is the
T-periodic solution for (9) in C,,. It is easy to show that

[FWIB) = —X,OU; (L@, N]+D,()  for teR.
We shall define & by the left-hand side of (15). It follows that
19D — 2@ . =k Y:—Y:ll..  for ¥, 4.€Cr ..
From 0<k <1, the first assertion of the theorem holds.

Choose ¢ such that 0 <<e<{r—7,. Since the assumption of Theorem 3
holds, we can define the operator G:C, ,—C,, by G(y)=z, for yeCr,,
where z, is the T-periodic solution for (13) in C, .. In the same argument

as the operator 9@,G is a contraction. Therefore the second assertion
holds. Q.E.D.
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