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We consider the Cauchy problem with characteristic initial surface
assuming the coefficients to be analytic. Though the uniqueness does not
hold in general for C or _q)’ solutions, we can expect it if we impose some
convexity condition. We establish such a uniqueness theorem at a doubly
characteristic point. The result makes us be able to understand the
TrOves’ example [6] in a general structure.

1. Result. Let U be a neighborhood of the origin in Rn+, P(x; )
--1a,(x), x=(x0, ..., Xn), and a.(x) be analytic functions in U. We
denote the principal symbol of P by p(x, _, dx). Let S be a hypersur-
face defined by (x)-- 0, where is a real-valued analytic function satisfying
p(0) 0 and d =/= 0 in U.

We assume
(A) p(x, c/)0 in U, and dp(x, d)=0 at x=0.

Under this assumption, we define

G= v ,d)(0);-- y O n/

Let 20, ...,.2 be the eigen values o this matrix. Besides, we put

Note. 1) These n+2 values 0, "", ,/ are invrint with respect to
the change of coordinates.

2) The matrix G has at least one zero eigen value.
3) Let F be the 2undamental matrix of p at its critical point

(0, d?(0)). Then, under the assumption (A), the eigen values of F are
equal to {_+0, ", --+}, where 2’s are those of G.

Now let k be the number of non-zero eigen values of G. We put the
following four conditions"
C.1 k>l.
C.2 Let A be the convex hull, on the cmplex number plane, of non-zero

eigen values of G, then 0 e A.

C.3 /e {i=o 2fl; fie Nn+}.
C.4 There are n real-valued analytic functions (x), i=1,...,n, such

that c/, c/, ..., c/ are linearly independent and that
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p--0 and dp=O
on {(x, t) (x)=0 and =0 for i=l, ...,k}T*U, where t=0d0+... +
dVn, e0=e.

Then our result is"
Theorem. Under the assumption (A), suppose four conditio.ns C.1, 2, 3

and 4. Then ue’(U),Pu=O and supp[u]{x=O}{x;(x)O} imply
0 e supp [u].

Note. In this note we call convexity condition the condition supp [u]
{x=O} {x (x)> 0}.

2. Example. Let us consider the operator
p=]_ x03+b, b constant.

It has two phase functions ? =(1/2)xo+_.x. The following 1)-3) hold"
1) There exists a solution u e C of Pu=O such that (0, 0) e supp [u]

{x_ --(1/2)x}.
2) If b{1,3,5,...}, then ue.’, Pu=O and supp[u]{(0,0)}U

{x, >-(1/2)x} imply (0, 0) supp [u].
3) If b e {1, 3, 5, .}, then there exists a solution ue C of Pu=O

such that (0, 0) e supp [u]{x(1/2)x}.
This example essentially dues to F. TrOves [6], see also Birkland and

Persson [1]. The uniqueness part 2) is a typical example of our theorem.
More generally, let O_k<m_n and

P=3]+. +3--(aoXo+. +ax)(3/+. +3)+bo3o+. -bnn,
where a are positive constants and b are analytic functions. Let
(x/,..., x)be a real-valued analytic function which satisfies (/)+

+(3)-- 1 and (0)-- 0. Then
I x)aoXo+ +--ax+ 4x(x , ...,

is a phase function of P. If we suppose

(b,)(0) e (2+ 1)a; fle NU {0}},
i=k+l t=0

then P and satisfy all the required conditions and consequently our
uniqueness theorem holds for them.

:. Remarks. 1) The proof of the theorem is done in a parallel way
as that of the Holmgren’s uniqueness theorem. We first consider the
Cauchy problem for the transposed equation Pu=f with initial data on
the hypersurface =c. We note that this hypersurface is characteristic
to the operator P. Given m-1 initial data, we establish an existence and
uniqueness theorem in the category of holomorphic unctions, cf. [2]. It
is important t see that the size o the existence domain of solution does
not depend particularly on the small parameter c. We can then prove the
theorem in a standard way. The details will be given in our forthcoming

paper.
2) The uniqueness at a characteristic point is closely related to the

propagation of analytic wave front sets. Uuiqueness like in the theorem
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and sometimes sharper one follows from the invariancy of WF(u) along
the bicharacteristic strips, see SjSstrand [5] and its references, where the
operators o principal type and those having involutory characteristics are
studied. T. Oaku [4] investigated a certain class of operators having non-
involutory characteristics. Particularly, when 1-0, our uniqueness
theorem for the operator Po follows rcm his result.
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