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1. Introduction. In the traditional definition of K. ItS’s stochastic
integral of a process with respect to Brownian motion B it is essential
that be non-anticipatory [8]. However, there are some works in which
one has tried to avoid this condition, s. e.g. [1, 4, 9]. Finally, the white
noise analysis, advocated by T. Hida (e.g. [2, 3]), has provided a framework,
in which stochastic integrals can be naturally defined without posing such
measurability conditions, as has been shown in a recent paper by H.-H. Kuo
and A. Russek [7].

Let (q’(R), ., d) be white noise, i.e. is the a-algebra over q’(R)
generated by the cylinder sets and/ is the Gaussian measure on with
characteristic functional

(1.1) exp (--1/2 [[[[)=; exp(i(x,))d/(x)
’(R)

for e 2(R), ]]. ]1 denoting the norm of U(R, dr) and (.,.) the canonical
duality. By (L), p0, we denote the Banach space L(q’(R), ., dp). Note
that
(1.2) B(t x) := (x, 1(0.)), x e q’(R)
(although not pointwise defined) is a well-defined random variable in (LP),
pl, and a Brownian motion (under d).

In [2,3] Hida introduced the space (L) of testfunctionals of white
noise and its dual (L) of generalized functionals. Furthermore he defined
the operators 3,, t e R, which are partial derivatives O/Ox(t)for white noise
testfunctionals, cf. also [5, 6]. Since is densely defined on (L) there is
its adjoint 3* acting on (L) -. Note that we have the Gel’land triple
(1.3) (L) (L) (L)
so that * acts by restriction on (U).

The following was shown in the paper [7] of Kuo and Russek assume
that p is a map from R/ into (L), non-anticipatory (i.e. for each e R+, (t)
is measurable w.r.t, a(B(s; .), Ogst)) and

(1.4) .[ E(, 9(t)[2)dt
is. finite, then

(1.5) .[i. 3*(t)dt
exists in (L) and equals ItS’s stochastic integral of 9 w.r.t. Brownian
motion. Of course, this generalizes to higher-dimensional Brownian
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motions, using independent copies of white noise.
The important thing about (1.5) is. that this expression is defined inde-

pendently of any measurability conditions posed on (t) (except or _@

measurability). Only (1.4) has to be supplemented with the condition that

be finite (c.f. [7] for the action of 3 on (L)). HenceE(,(t)O(s))dsdt
[a, b]

(1.5) is an extension of the traditional definition for quite general processes.
in (L).

For the theory and applications of stochastic integrals ItS’s lemma [8]
plays a key role. Naturally the question arises, what this lemma becomes,
i the non-anticipatory condition on is dropped and stochastic integrals
are understood as in (1.5). The answer is given in the next section.

2. A generalization of It6’s Lemma. Let 9,, +,, i= 1, 2, ., n be real,
strongly continuous processes in (L2), such that the stochastic integrals

(2.1) X(t) x+: * (s)ds+ I: q(s)ds
exist in (L) for all t e R+. Here x e R, i=1, 2, ..., n.

The discussion after (1.5) implies, that we have to set

(2.2) o (S)dX(s)=fi *(s)(s)ds+ fo (S)(s)ds
for the stochastic integral o another process w. r.t. dX (2.2) guarantees
that this stochastic integral cincides with the conventional one, if all pro-
cesses involved are non-anticipatory w. r.t. Brownian motion.

For the ]ollowing let :R+--(L) be continuous and assume that v(t)
has a piecewise continuous integral kernel (cf. [2, 3, 6]). Furthermore let
(z) be a partition of (0, t) into intervals (tt, /) of length and put

Y(a, b)= *(s)ds, i= 1, 2, ., n(2.3)

a) (2.4) lim (t,)Y,(tt, t,+ )
/$0

where 0/ is the derivative defined in [7]

b) (2.5) lim (t,) Y,(t, t, +) Y(t,, t,+ )
0

c) (2.6) lim (t)Y(t, t+)Y(t, t+)Y(t, t+)
o

=0
(all limit are taken in the topology o.f (L)).
The proof o this lemma is performed by straightforward computations

of the -transforms [3, 5, 6] of products of random variables and standard
estimations o the resulting Lebesgue integrals.

Now let X(t) denote the R-valued random variable with components
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X(t), i--1,2,..., n, and consider its composite F oX_(t)--F(X_(t)) with a
real C(R) function F. Furthermore we have to assume that F and its
partial derivatives D"F, la]-l, 2, 3, composed with _X (t) belong to (L) for
all t.

Under the preceding conditions it is a matter of applying Taylor’s
theorem and the lemma to establish the ollowing theorem"

Theorem.
F(X_ t)) F(X_ (s))

(2.7) DF(X-(u))dX(u)
i=l

Note that formula (2.7)reduces to the usual ItS-lemma, in case that
and are non-anticipatory for all i e {1, ..., n}, since then also all the

X are non-anticipating and 3/X(u)=0 by a theorem in [7].
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