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1. Introduction. In what follows, we summarize some results on
the irreducible decomposition of unramified principal series representations
of quasi-split groups. A detailed account will be published elsewhere. In
the case of split groups, the corresponding results were obtained by Rodier
[3].

Let G be a connected reductive algebraic group defined over a non-
archimedean local field F. We assume G is unramified, that is, G is quasi-
split over F and split over an unramified extension of F. Let E be the
minimal splitting field of G. Let S be a maximal F-split torus in G defined
over F, T the centralizer of S in G, which is a maximal torus in G, and B
a Borel subgroup of G defined over F containing T. We denote by G(F),
B(F), ..., the locally compact and totally disconnected groups consisting
of F-rational points of G, B, Let X*(S)be the character group of S,
V=X*(S)(R)R the vector space over the real number field R and ) the relative
root system of G with respect to S. A "root ray" of G with respect to S
is an open half line with the starting point 0 in V containing at least one
root relative to S. Let Y be the set of root rays of G with respect to S.
For a e Y, let a(a) (resp. r(a)) be the non-divisible (resp. non-multipliable)
root contained in a. A root ray a is called plural if a(c)=/=r(a). We take
the coroot system v attached to the reduced root system (r(a)]a e Y}. The
coroot corresponding to a root r(a) is denoted by av. For a e ?K, we choose
an absolute root a of G with respect to T such that the restriction of a to
S equals a(a). Let F be the stabilizer of a in the Galois group F of E over
F and d(a) the index of F in F. Note that d(a) is independent of the choice
of a. Further, when a is a plural root ray, we put (a)=(d(a)/2)+
(log (qr))-r:-, where q is the cardinality of the residual field of F and
z=3.141.

2. The unramified principal series. Let To be the maximal compact
subgroup of T(F). An element of Xo(T)=Hom(T(F)/To, C*) is called an

unramified character of T(F). The relative Weyl group Wo(S) correspond-
ing to S acts on X0(T), namely, for w e Wo(S) and x e Xo(T), the action of
w on Z is defined by Z(t)=Z(w-tw), t e T(F), where _w is a representative
of w in the group o F-rational points of the normalizer of S in G. An
unramified character Z is called regular i Z=/=Z or any w e Wo(S), w=/=l.
Let Xog(T) be the set of regular unramified characters of T(F). Note that
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each unramified character Z is trivially extended to a character of B(F).
Now, for Z e Xo(T), the representation I(Z) of G(F) induced by (the extension
of) Z is by definition the right regular representation of G(F) on the space
of all locally constant functions :G(F)--.C such that (bg)--(b)Z(b)(g)
for any b e B(F), g e G(F), where 5 is the positive square root of the
modulus character of B(F). I(Z) is called an unramified principal series
representation of G(F). It is known that, for any Z e Xr(T), I(Z) has a
unique irreducible subrepresentation of G(F).

3. The irreducible decomposition of I(Z). We fix Z e Xre(T) and
denote by H(Z) the subset of v consisting of av, where a ( e ) is non-plural
and Z av =1" I or a is plural and Z av =1" I or I" I, I" I denoting the
normalized absolute value of F. Let JH(Z) be the set of irreducible
constituents of I(Z) and C(Z) the set of connected components of
V-e() Ker (av). Note that the multiplicity one theorem holds for I(Z).
Further, by a result of Bernstein and Zelevinsky [1], one may identify JH(Z)
with JH(Z) for any w e W(S). For D e C(Z), let W(D)={w e W(S)]w-C
cD}, where C is the Weyl chamber in V corresponding to B. For w e W(D),
let p(D, w) be the unique irreducible subrepresentation of I(z). Then, we
have

Theorem 1. Let Z e Xre(T) and D e C(Z). Then, for any wl, w. e W(D),
p(D, wl) is G(F)-isomorphic to p(D, w). Namely, the isomorphism class of
p(D, w) (w e W(D)) depends only on D.

We write p(D)for p(D, w), considered as an element of JH(Z). Then
we have a correspondence p:C(Z)-JH(Z), Dp(D).

Theorem 2. Let Z e Xr,(T).
(1) The map p" C(Z)--JH(Z) is bi]ective.
(2) Let (H(Z)) be the set of coroots represented by an integral linear

combination of elements of H(Z). Then, (H(Z)) is a root system and H(Z)
is a basis of (H(Z). In particular, the elements of H(Z) are linearly
independent and the cardinality H(Z) of H(Z) is bounded by the semisimple
F-rank of G. (Combining with (1), one sees that the cardinality of JH(Z)
equals 2I1 .)

(3) Let D (ve, (av)-(R/), where R/ is the set of positive real
numbers. Let be a non-degenerate character of the group U(F) consisting

of the F-rational points of the unipotent radical of B. Then, for D e C(Z),
p(D) has a Whittaker model with respect to if and only if D=-Dz.

These theorems are proved by using Rodier’s method ([3]) and the
properties of irreducible root systems which appear as in constituents of
v.
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